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Cognition refers to the set of processes via which we 
make judgments about the world (e.g., deciding 
whether a stock’s value is likely to rise on the basis of 
a sequence of returns), whereas metacognition refers 
to judgments that we make about our own cognition 
(e.g., how confident we are in our decision to purchase 
this stock). Confidence is a canonical example of such 
a metacognitive judgment, and previous research has 
demonstrated that humans can both estimate their deci-
sion confidence in a way that is reliably related to 
cognitive performance and rely on confidence to modu-
late further cognition (Bahrami et  al., 2010; Balsdon 
et al., 2020; Carlebach & Yeung, 2020; Desender et al., 
2019; Hainguerlot et  al., 2018; Rollwage et  al., 2020; 
Sanders et  al., 2016; van den Berg et al., 2016). The 
extent to which confidence tracks variation in objective 

performance is known as confidence resolution or 
metacognitive sensitivity (Fleming & Lau, 2014).

Research in the past few decades has converged on 
integration to boundary as an efficient, Bayesian mech-
anism for evidence-based decision-making (Bogacz 
et al., 2006; Ratcliff et al., 2016; Teodorescu & Usher, 
2013). Integration to boundary allows participants to 
decide not only what decision to make but also how 
long to keep gathering evidence before committing  
to a particular choice (Fig. 1b). By integrating evidence 
to a boundary, one improves the signal-to-noise ratio, 
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Abstract
Integration to boundary is an optimal decision algorithm that accumulates evidence until the posterior reaches a decision 
boundary, resulting in the fastest decisions for a target accuracy. Here, we demonstrated that this advantage incurs 
a cost in metacognitive accuracy (confidence), generating a cognition/metacognition trade-off. Using computational 
modeling, we found that integration to a fixed boundary results in less variability in evidence integration and thus 
reduces metacognitive accuracy, compared with a collapsing-boundary or a random-timer strategy. We examined how 
decision strategy affects metacognitive accuracy in three cross-domain experiments, in which 102 university students 
completed a free-response session (evidence terminated by the participant’s response) and an interrogation session 
(fixed number of evidence samples controlled by the experimenter). In both sessions, participants observed a sequence 
of evidence and reported their choice and confidence. As predicted, the interrogation protocol (preventing integration to 
boundary) enhanced metacognitive accuracy. We also found that in the free-response sessions, participants integrated 
evidence to a collapsing boundary—a strategy that achieves an efficient compromise between optimizing choice and 
metacognitive accuracy.
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resulting in decisions with the fastest reaction time (RT) 
for a given accuracy level (Bogacz et al., 2006; Wald & 
Wolfowitz, 1948). Moreover, integration to boundary is 
a key mechanism in most choice-RT models that 
account for key experimental data patterns, such as the 
shape of the RT distribution and its dependency on the 
strength of evidence, as well as the speed/accuracy 
trade-off (Ratcliff et  al., 2016; Teodorescu & Usher, 
2013).

There is less agreement on the mechanisms support-
ing metacognitive judgments of confidence about such 
decisions (Yeung & Summerfield, 2014). Although vari-
ous confidence mechanisms have been proposed, they 
differ drastically in their nature, from Vickers’s balance 
of evidence, which is based on a nonnormative race 
model of choice (Vickers, 1979; see also De Martino 
et al., 2013; Merkle & Van Zandt, 2006; Reynolds et al., 
2020), to the more recent two-stage, dynamic signal 
detection theory (SDT) model (Pleskac & Busemeyer, 
2010), which is based on a normative, integration-to-
boundary choice model. One problem with the latter 
type of models is that if evidence continues to be col-
lected until the integrated evidence reaches a constant 
boundary (corresponding to the expected posterior 
probability; Fig. 1b), there is little variability left 
(between trials) that can signal variations in objective 
accuracy. In other words, these models suggest that 
confidence should be similar for decisions that 
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Fig. 1.  Predictions of the signal detection theory and integration-to-boundary models. Signal detection theory (a) can be used to generate 
decisions and confidence with a fixed number of samples. The decision is a binary comparison of evidence with a criterion (indicated by 
the dashed vertical line), and confidence is the distance from criterion. The blue and red curves correspond to samples from two types 
of stimuli, respectively, for which confidence is determined as the distance from criterion. Resolution is positive because the further one 
is from criterion, both confidence and expected accuracy increase in tandem. For the integration-to-boundary model (b), three example 
trials are shown (two with correct responses [blue] and one with errors [red]). The upper “A” boundary is the correct response. Integra-
tion is terminated when the posterior probability reaches a constant threshold; this minimizes differences between trials in confidence 
and therefore reduces confidence resolution. Dashed horizontal lines indicate the response boundaries.

Statement of Relevance

Whereas cognition is a process of making judg-
ments about the world, metacognition is the pro-
cess of reflecting, monitoring, and controlling 
one’s own cognitive processes. Research in experi-
mental psychology and neuroscience has demon-
strated that humans can make metacognitive 
judgments about their own decisions, which 
reflects their decision accuracy, and has investi-
gated the underlying mechanism. In this study, we 
examined a specific aspect of metacognition—
decision confidence. Using a controlled experimen-
tal paradigm, we determined how the mechanism 
underpinning confidence formation adapts to task 
contingencies in order to optimize behavioral per-
formance. In particular, we demonstrated a novel 
trade-off between cognitive and metacognitive 
performance, and we examined strategies that 
allow human agents to balance and optimize both 
performances. The results have implications for 
understanding the conditions under which we are 
able to rely on metacognition to enhance our per-
formance (such as when we decide how much 
effort we should invest on various questions in an 
exam).
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terminate at the same boundary.1 Researchers have 
dealt with this problem using normative confidence 
models, such as the two-stage, dynamic SDT model, 
which introduced the idea of postdecision integration 
(Moran et  al., 2015; Pleskac & Busemeyer, 2010), 
according to which confidence is based on the consis-
tency with which some extra evidence (collected after 
the decision is made but before the confidence is 
signaled) supports the decision. Other confidence 
models account for variations in confidence in addi-
tional ways, for example, by relying on decision time 
as a proxy for confidence (Zakay & Tuvia, 1998) in 
addition to a balance-of-evidence mechanism (Kiani 
et al., 2014), or by assuming that the decision itself is 
determined by a race between multiple confidence 
accumulators (Ratcliff & Starns, 2009; for a recent 
review and discussion of normative models, see 
Calder-Travis et al., 2021).

A broader consideration of such frameworks suggests 
that humans face a cognitive/metacognitive trade-off 
with regard to the normative aspects of their decisions 
and confidence judgments. When faced with a stream 
of stochastically fluctuating evidence, an observer can 
integrate the evidence to a decision boundary—a fixed 
boundary is optimal for choices with a fixed difficulty 
level, corresponding to the sequential probability-ratio 
test (Wald, 1947)—optimizing the decisions at the 
expense of metacognitive accuracy or confidence resolu-
tion (defined here as the difference between the confi-
dence of correct and incorrect responses). Alternatively, 
observers can adopt a less normative decision strategy, 
which allows them enough information to achieve an 
improved confidence resolution. The simplest such strat-
egy is to dispose of integration to boundary altogether 
in favor of taking a number of samples (either fixed or 
determined by a random timer that is independent of 
the decision) before committing to the decision. Whereas 
this results in less optimal decisions, it allows the 
observer to rely on the SDT framework, in which con-
fidence corresponds to the distance from a criterion 
(Kepecs & Mainen, 2012), thus providing a robust degree 
of confidence resolution (Fig. 1).

We report three experiments that tested this idea. 
The first is a pilot experiment (N = 17), the second is a 
preregistered experiment (N = 35), and the third is an 
experiment carried out during the review of this article 
to rule out potential confounds (N = 50). In all experi-
ments, participants were asked to make decisions about 
fluctuating evidence, followed by confidence ratings. 
Each participant completed two sessions. In the first 
session, we used a free-response protocol, in which the 
evidence was presented until the participant responded 
(this is thought to engage an integration-to-boundary 

strategy in most participants). In the second session, 
we used an interrogation protocol, in which the evi-
dence was presented for a predetermined number of 
samples, and the response was requested after the evi-
dence stream ended (Bogacz et  al., 2006). Critically, 
each trial in the interrogation session had an equal 
number of frames (and the same average signal and 
noise) as in the corresponding trial from the free-
response session. To anticipate our results, we con-
firmed the predicted trade-off—metacognitive accuracy 
was higher (and choice accuracy was lower)—in the 
interrogation session compared with the free-response 
session. We start with a brief computational section that 
highlights the basis for our predictions, followed by the 
results of the experiments, which examined how con-
fidence was formed in the two paradigms.

Computational Methods: Predictions 
on Confidence Resolution

Consider a task that presents sequences of pairs of 
two-digit numbers, randomly sampled from two over-
lapping normal distributions (Fig. 2). Participants, who 
are unaware of the distributions, are required to choose 
which sequence—left or right—is generated from the 
higher mean distribution.

We simulated two types of decision strategy: (a) inte-
gration to a fixed boundary (sequential probability-ratio 
test) and (b) integration of a fixed number of samples, 
chosen to produce the same accuracy as in (a). In (a), 
the amount of integrated evidence was by definition 
fixed by the constant boundary and exhibited little vari-
ability between trials (however, see Note 1 and Fig. 3a 
for simulation results showing that this produced very 
low confidence-accuracy correlations). We also consid-
ered the prominent two-stage, dynamic SDT mechanism 
(Pleskac & Busemeyer, 2010), which suggests that in 
such situations, confidence resolution can be improved 
by sampling postdecision evidence and examining the 
strength of its consistency with the decision. We imple-
mented this in the simplest way, by taking one extra 
sample (following the integration-to-boundary deci-
sion). This extra sample can carry information that is 
consistent with the decision (leading to higher confi-
dence) or inconsistent with it (leading to lower confi-
dence; see Pleskac & Busemeyer, 2010, Fig. 1, reproduced 
as Fig. S4 in the Supplemental Material available online).2 
As shown in Figure 3b, this resulted in an increase of 
the correlation between confidence and accuracy.

For the “integration over a fixed number of samples” 
simulation (which can be naturally applied either in an 
interrogation task or in a free-response task, if evidence 
termination is based on a random timer), we determined 
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confidence from all the evidence available in the trial 
and not from the last frame only. Here, there are two 
distributions for the total evidence—one for trials in 
which the rightward evidence stream has a greater mean 
and one for trials in which the leftward evidence stream 
has a greater mean (where the x-axis corresponds to 
left-to-right evidence). We therefore relied on standard 
SDT approaches (e.g., Kepecs & Mainen, 2012) to com-
pute choice (as the sign of the sample relative to the 
decision criterion) and confidence as the normalized 
distance (minimum–maximum normalization) from the 
decision criterion (i.e., the y-axis that corresponds to 0 
confidence; Fig. 1a; for details, see the Supplemental 
Material). In Figure 3, we plot example distributions of 
the normalized confidence obtained from simulations 
of the three decision rules: (a) integration to boundary 
only (top panel), (b) integration to boundary followed 
by one postdecision sample for confidence (middle 
panel), and (c) a decision based on a fixed number of 
samples (using SDT; bottom panel). In all cases, we 
show this separately for correct responses (blue) and 
incorrect responses (red) and report the correlation 
between confidence and choice accuracy. Note that we 
present the results only for the case in which the left 
distribution had a higher mean than the right one (left 
trials), as the other case (right > left) is symmetrical (for 
further details, see the Supplemental Material). As shown 

in Figure 3, the interrogation protocol resulted in 
enhanced confidence resolution, as indicated by a 
higher correlation between confidence and accuracy 
(r = .30 compared with r = .17) and by a larger differ-
ence in (normalized) confidence of correct and incorrect 
responses. This result is an expected outcome of the 
fact that the total evidence has more relevant informa-
tion about the likelihood of a decision being correct 
than a single (postdecision) evidence frame. Note that 
in the absence of any postdecision evidence, the inte-
grated evidence became similar in all trials (but see Note 
1), and the confidence–accuracy correlation was even 
lower (r = .07; Fig. 3, top panel).

As we show in the Supplemental Material, adopting 
a collapsing (rather than a fixed) boundary (Evans 
et al., 2020; Glickman et al., in press; Glickman & Usher, 
2019; Malhotra et al., 2017; Palestro et al., 2018) in the 
free-response protocol allowed agents to obtain a con-
fidence resolution that was higher than that based on 
the last sample but still lower than what could be 
obtained based on the total evidence (assuming that 
the same number of evidence samples from the same 
distributions was used in the two cases).

General Method

Each experiment presented participants with sequences 
of fluctuating evidence (pairs of numbers or lines sam-
pled from overlapping Gaussian distributions) at a rate 
of about two pairs per second (Fig. 2) and required 
them to decide which sequence originated from the 
higher of the two Gaussian distributions. All partici-
pants carried out two sessions: a free-response session 
and an interrogation session. In the free-response ses-
sion, the evidence continued until response (or a dead-
line of 15 frames). In the interrogation session, the 
evidence was presented for a fixed number of frames, 
which was equated (for each participant) to that of the 
free-response session. This was done either on a trial-
by-trial basis (Experiments 1 and 2) or on average 
(Experiment 3). For example, in Experiments 1 and 2, 
if a participant responded in Session 1 after five frames 
in Trial 1 and after nine frames in Trial 2, then in the 
second session, that participant was presented with five 
frames in Trial 1 and nine frames in Trial 2 (for addi-
tional methods, see the Supplemental Material).

A total of 102 undergraduates from Tel Aviv Univer-
sity (68 female; age: M = 25 years, range = 21–35 years) 
participated in the three experiments. The participants 
received course credit in exchange for taking part. The 
experiments were approved by the ethics committee at 
Tel Aviv University. The number of participants in the 
first experiment (the pilot) was determined on the basis 
of previous similar confidence studies (e.g., Pleskac & 
Busemeyer, 2010). In Experiment 2 (N = 35) and 
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Fig. 2.  Experimental paradigm in the free-response and interrogation 
sessions. Sequences of two-digit numbers, selected from Gaussian 
distributions, were presented at a rate of two pairs per second until the 
participant responded (either “left” [L] or “right” [R]) to indicate which 
evidence stream was larger on average. In this example trial, the cor-
rect answer was “R” (because the right-hand sequence was generated 
from a distribution with a higher mean). The experimental paradigm 
in the two sessions was the same, except that in the interrogation 
session, the trial was terminated after a fixed number of samples.
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Experiment 3 (N = 50), the number of participants was 
determined through power analysis based on our effect 
sizes in Experiments 1 and 2, respectively (we used 
higher power in Experiment 3, as this included a few 
changes to the design; see the Method section for Experi-
ment 3).

Experiments 1 and 2

Method

Experiments 1 and 2 used the same paradigms (Fig. 2). 
Each trial began with a fixation point followed by two 
rapidly changing (2 Hz) sequences of numerical values. 
Participants were instructed to indicate which sequence 
was drawn from a distribution with a higher mean. 
Critically, in the first session, we used a free-response 
paradigm in which the participant’s decision terminated 
the trial, and in the second session, we used an inter-
rogation paradigm in which participants had to wait 
until the sequences ended and only then make a 

decision. The two session types were manipulated 
within participants, and the free-response session was 
always presented first. The number of samples in each 
trial in the interrogation session was determined accord-
ing to the number of samples that the participant used 
in the free-response session at the corresponding trial. 
A small difference between Experiment 1 and Experi-
ment 2 was that in Experiment 1, the number of sam-
ples in each trial for the interrogation session was 
always equal to the corresponding trial from the free-
response session. In Experiment 2, the number of sam-
ples in the interrogation session was either equal or 
equal minus 1 (n or n – 1) depending on the RT within 
the last sample (RT ≥ 250 ms = n, RT > 250 ms = n – 1). 
This change was made because of our assumption that 
trials in which participants responded faster than 250 
ms were those in which the last sample was not used 
to guide the decision but could be used to inform con-
fidence. The stimuli were sampled from overlapping 
Gaussian distributions with s of 10. In the free-response 
sessions, all participants started with the same means 
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Fig. 3.  Confidence distributions for three models of choice and confidence. For each model, 
the distribution of normalized confidence levels is shown for correct (blue) and incorrect 
(red) responses (dashed lines indicate mean confidence for each condition). The correla-
tion between confidence and choice accuracy is also shown. The models shown in the top 
and middle panels rely on integration to boundary to determine choice (in free-response 
protocols). The two panels show the effects of two different rules for how confidence is 
computed: integrated evidence to boundary only (top panel) or integrated evidence + 
postdecision evidence sample (middle panel). The bottom panel shows both choice and 
confidence computed by applying signal detection theory to the total evidence over a 
fixed number of samples that was selected to equalize accuracy levels of the free-response 
and interrogation protocols. Here, confidence was determined using the signal detection 
theory framework by calculating the absolute distance from the criterion (for details, see 
the Supplemental Material available online).
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of the two Gaussian distributions (μ1 = 52 vs. μ2 = 46). 
To keep general performance between 70% and 90% 
correct for all participants, we increased μ2 in steps of 
1 following blocks of 30 trials with performance higher 
than 90% accuracy and decreased μ2 in steps of 1 fol-
lowing blocks with performance lower than 70% accu-
racy. Each session consisted of five blocks of 30 trials 
each, and the stimulus difficulty for each block of the 
interrogation session was equated to the corresponding 
block of the free-response session.

Results

Experiment 1.  Choice accuracy in each session and 
three measures of confidence resolution are reported in 
Table 1 as averages across participants. For the free-
response session, accuracy corresponds to the fraction of 
trials in which participants selected the stream generated 
from the higher Gaussian distribution. Thus, if a partici-
pant responded after a single frame by selecting the larger 
of the two numbers presented, this counted as an error if 
this higher sample happened to come from the lower 
Gaussian distribution. If the number of samples exceeded 
15, the presentation of the numerical values stopped, and 
the response of the participant was randomly chosen. 
Note that in the preregistration, we considered those trials 
as errors. This difference accounts for the small discrep-
ancy between the accuracy level in the free-response con-
dition (Table 1) and the accuracy level in the preregistration. 
In the interrogation session, accuracy corresponds to the 
selection of the alternative that received higher evidence 
in that trial because selecting on the basis of this is the 
best strategy that a participant can adopt.

Three measures of confidence resolution were com-
puted: (a) the difference between the confidence of 
correct and error responses, (b) the trial-by-trial gamma 
correlation between confidence and accuracy (Nelson, 
1984), and (c) the Type 2 area under the receiver oper-
ating characteristic (AUROC) measure of metacognitive 
performance (Clarke et al., 1959; Fleming & Lau, 2014).

Choice accuracy was highly similar in the two sessions 
(note, however, that participants had the advantage of 

practice in Session 2, and also the criterion was adjusted 
to the overall evidence, which is what participants could 
judge). In contrast, all three measures of confidence 
resolution show improved metacognitive performance 
in the interrogation session. This reached statistical sig-
nificance for two of the measures and was marginal for 
the third one. Finally, in Figure 4, we show the correla-
tion between confidence and RT in the two sessions.

The typical negative correlation between confidence 
and RT was found only in the free-response session 
(mean β = −0.34, SD = 0.19). This indicates that in free-
response situations, participants used the number of 
samples they examined as a proxy for the task difficulty 
and thus for confidence (Kiani et  al., 2014; Zakay & 
Tuvia, 1998). Alternatively, participants could rely on a 
collapsing boundary to form their choice (Evans et al., 
2020; Glickman & Usher, 2019; Malhotra et  al., 2017; 
Palestro et al., 2018) and then use this time as a proxy 
for the level of the boundary reached at decision time. 
In the interrogation session, on the other hand, the cor-
relation between confidence and accuracy was positive 
(mean r = .1, SD = .1). These dissociations between 
confidence and RT (as a result of the self-termination vs. 
controlled decision time) are consistent with findings in 
the previous literature (see Benchmarks 4 and 5 in Table 
2 of Pleskac and Busemeyer, 2010, and additional refer-
ences there). We defer an explanation of this difference 
to the Supplemental Material.

Experiment 2.  On the basis of the above results, we 
carried out a preregistered experiment (https://osf.io/
gt2qz/) on a larger cohort of participants (N = 35). This 
sample size was selected on the basis of an a priori 
power analysis that tested the difference between confi-
dence resolution in Session 1 and Session 2 of Experi-
ment 1 (using a two-tailed paired-samples t test with an 
α of .01). This analysis showed that 35 participants were 
required to achieve a power of .80.

In Table 2, we report the same measures of choice 
accuracy and metacognitive performance as used in the 
analysis of Experiment 1. Choice accuracy was signifi-
cantly higher in the second session (again, this includes 

Table 1.  Average Choice Accuracy and Measures of Confidence Resolution in Experiment 1

Measure

Session Comparison

Cohen’s dFree response Interrogation t(16) p

Accuracy .81 .81 0.4 .66 0.10
Confidence resolution 0.87 1.01 2.3 .03 0.56
Gamma correlation between 

confidence and accuracy
.51 .58 1.8 .08 0.44

Type 2 AUROC .67 .7 2.1 .05 0.51

Note: Accuracy is the proportion of correct responses. AUROC = area under the receiver operating 
characteristic curve.

https://osf.io/gt2qz/
https://osf.io/gt2qz/
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benefits from practice). All three measures of metacog-
nition were higher in the interrogation session. To 
establish that such differences were not simply due to 
differences in task accuracy, we carried out an analysis 
of covariance (ANCOVA), which compared the meta-
cognitive performance measures while controlling for 
differences in accuracy. Note that an alternative approach 
here would be to use a model-based estimate of meta-
cognitive efficiency (i.e., metacognitive performance 
controlling for task performance) such as meta-d′/d′ 
(Maniscalco & Lau, 2012). However, because of the 
meta-d′ framework assuming an underlying SDT model 
for confidence, which we anticipated would not hold 
for the free-response session, we instead focused on 
model-free estimates of metacognitive performance and 
controlled for task-performance differences after data 
collection. After controlling for performance, we con-
tinued to obtain higher metacognitive performance in 

the interrogation compared with the free-response task, 
as predicted, and we found significant differences in 
two of the measures and a trend in the third one. We 
note that the Type 2 AUROC, which unlike gamma is 
unaffected by biases in overall confidence level (Flem-
ing & Lau, 2014), was consistently higher in the inter-
rogation session in both Experiments 1 and 2. Finally, 
we examined whether the improvement in metacogni-
tion was correlated with the improvement in choice 
accuracy. There was no correlation between these mea-
sures (r = –.02), further suggesting that the metacogni-
tive improvement was not due to differences in task 
performance.

To better understand differences between the mecha-
nisms of confidence formation in the free-response and 
interrogation sessions, we first examined the correlation 
between confidence and RT (in the two sessions). Rep-
licating the findings of Experiment 1, analyses showed 
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Fig. 4.  Confidence in Experiment 1. Beta weights for the effect of reaction time on confidence (a) are shown for each participant in the 
free-response and interrogation sessions. Group-mean confidence is shown (b) as a function of reaction time (number of samples before 
responding) in the two sessions. Error bars represent within-subjects standard errors (Cousineau, 2005).

Table 2.  Average Choice Accuracy and Measures of Confidence Resolution in Experiment 2

Measure

Session Comparison

Cohen’s dFree response Interrogation t(34) F(1, 33) p

Accuracy .79 .83 5.7 < .001 0.97
Confidence resolution 0.84 1.10 2.7 .10 0.36
Gamma correlation 

between confidence 
and accuracy

.49 .59 4.9 .03 0.44

Type 2 AUROC .67 .72 5 .03 0.45

Note: Accuracy is the proportion of correct responses. AUROC = area under the receiver operating characteristic curve.
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that the correlation between confidence and RT was 
negative in the free-response session but not in the 
interrogation session (Fig. 5).

Second, as indicated by the fits of alternative com-
putational models (for details, see the Supplemental 
Material), we found that in the free-response sessions, 
participants’ choices were best described by an integra-
tion to a collapsing boundary model (Balsdon et al., 
2020; Evans et  al., 2020; Glickman & Usher, 2019; 
Malhotra et  al., 2017; Palestro et  al., 2018), which is 
optimal under conditions that mix difficulty levels 
(Malhotra et al., 2017). In turn, confidence in the free-
response session was best accounted for by three pre-
dictors: (a) the evidence from the last item in the 
sequence, (b) the remainder of the evidence, and (c) 
RT (consistent with a robust negative correlation 
observed between confidence and RT; Figs. 4 and 5). 
In the interrogation session, on the other hand, we 
found that choices were well accounted for by the SDT 
model based on integrated evidence (for reverse cor-
relation analysis ruling out an implicit boundary for 
evidence integration, see Fig. S5 in the Supplemental 
Material; Kiani et al., 2008). For confidence, we found 
that the best predictors were the total accumulated 
evidence or a leaky integration of the evidence with an 
average leak factor of .88 per frame (i.e., .88 of the 
integrated evidence was maintained at every time frame 
while the rest leaked; Teodorescu & Usher, 2013; for 
model description and parameters, see the Supplemen-
tal Material).3 Importantly, as illustrated in Figures 4 
and 5, unlike in the free-response task, the trial length 

(number of frames) was positively correlated with con-
fidence. Further analysis indicated that this was because 
of the association between time and amount of evi-
dence in this task: The correlation became null after 
the total evidence was partialed out (see Fig. S4).

Discussion

In the first two experiments, we found support for the 
idea that the adopted decision strategy (free response or 
interrogation) affects metacognitive performance. In par-
ticular, when participants were allowed to freely choose 
when to respond (i.e., when they integrated evidence to 
an internal decision boundary), their metacognitive per-
formance was lower than when they made a decision on 
the basis of an exogenously determined number of sam-
ples. However, it can be argued that these results were 
caused by a confound related to how accuracy was mea-
sured in the two tasks. In the free-response task, a correct 
choice was defined according to the generating distribu-
tions (the nominal evidence)—which is how the task was 
presented to participants (they needed to decide which 
evidence stream, left or right, corresponded to the higher 
payoff distribution; Fig. 2). In contrast, in the interroga-
tion task, the correct choice was defined by the actual 
stream that was presented to the participant (the actual 
evidence). Note that in the interrogation condition, decid-
ing about the actual evidence was more natural to the 
participants because they had no way to obtain additional 
evidence to dissociate between actual accuracy (what 
they saw) and nominal accuracy (i.e., the generating 
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distribution). Moreover, in a fraction of “conflict” trials 
(on average, 13% for the interrogation session and 5% 
for the free-response session), these two accuracy criteria 
(actual/nominal) differed. For example, one may have 
had a trial in which the higher evidence-generating 
stream was on the left, but at the time of response, the 
right sequence had delivered a higher amount of observed 
evidence. The fraction of such conflict trials was higher 
in the interrogation session because in this session, the 
evidence was sampled afresh, independently of the num-
ber of evidence samples. By contrast in the free-response 
task, there was a dependency between the evidence and 
the number of samples, so that short evidence trials were 
easier (resulting in faster integration to boundary). Con-
sequently, if the participant responded in such a conflict 
trial on the basis of the actual evidence, this counted as 
a mistake in the free-response task (where the task was 
to decide on the generating distribution, and it was the 
participant’s fault for deciding too soon), but it counted 
as a correct response in the interrogation session (where 
the participant did not have any way to determine that 
the actual evidence was contrary to the nominal evi-
dence). Although this is consistent with the task instruc-
tions, it may lead, in principle, to a performance bias 
favoring the interrogation session and thus could provide 
an explanation for the improved metacognitive perfor-
mance in this session.

One way to partially address this concern would be 
to use (contrary to task instructions) the same criterion 
of “correctness” in the two tasks when analyzing meta-
cognitive performance. We reanalyzed the results of 
Experiment 2 using the “actual” evidence criterion (the 
accuracy defined by what participants had observed 
prior to responding) in both sessions. Whereas partici-
pants were instructed to decide on the basis of nominal 
evidence in the free-response session, one may reason 
that if a participant responded too fast and encountered 
evidence that was in conflict with the generating dis-
tribution, the participant may still have judged confi-
dence on the basis of the actual evidence (this is not 
strictly correct, and we will address it in Experiment 3 
below). When we scored metacognitive performance 
on the basis of this actual evidence criterion in both 
the free-response and interrogation sessions, we still 
found that the metacognitive performance remained 
significantly higher in the interrogation session (Type 
2 AUROC for free response = .68, Type 2 AUROC for 
interrogation = .72), t(34) = 2.13, p = .04.

A better way to address the accuracy-criterion con-
cern is to score performance on the basis of nominal 
criteria in both sessions. This is because we aimed for 
the interrogation session to be a simulation of the per-
formance that would be achieved in a free-response 

task in which the participants used no integration to 
determine the length of evidence (e.g., they deployed 
a random-timer strategy; Glickman & Usher, 2019). 
Thus, scoring both sessions on the basis of nominal 
accuracy criteria is more consistent with this rationale. 
The problem with using nominal criteria in both ses-
sions is that in the interrogation session, there was a 
higher fraction of conflict trials (short trials in which 
the actual evidence went against the generating distri-
butions), and participants were told to respond on the 
basis of the evidence they saw at the end of the 
sequence. To deal with this, we carried out a third 
experiment, which presented the instructions based on 
nominal criteria in both sessions4 and in which we also 
aimed to reduce the fraction of conflict trials by design.

Experiment 3

In this experiment, we emphasized nominal choice 
accuracy (i.e., the requirement to indicate the sequence 
generated from the higher mean distribution) for both 
choice and confidence in both sessions, and we 
attempted to minimize the fraction of conflict trials 
(where nominal and actual accuracy conflicted) that 
participants encountered in the interrogation session 
(~13% in Experiments 1 and 2). To do this, instead of 
equalizing the number of samples in the two sessions 
trial by trial, as in Experiments 1 and 2, we equalized 
the number of samples in Experiment 3 for each par-
ticipant on average, across trials in a session. For exam-
ple, in the first free-response session, if a participant 
made decisions that integrated between three and 12 
evidence frames (with an average of seven frames), 
then the participant received seven evidence frames on 
all trials in the second interrogation session (with evi-
dence streams being newly sampled from the same 
generating distributions as in the free-response ses-
sion). This reduced the fraction of ambiguous conflict 
trials in the second session (which were typically the 
very short trials), for which participants had little 
resources to distinguish between actual and nominal 
accuracy criteria. Thus, this procedure allowed us to 
compare the integration-to-boundary strategy, which 
the participant could deploy in the first session, with 
the fixed-number-of-samples strategy required in the 
second session, when task performance was calculated 
using the same nominal criterion for accuracy in both 
cases. On the basis of computational considerations, 
we predicted that even under these carefully matched 
conditions, choice accuracy and metacognitive perfor-
mance would continue to show a trade-off—choice 
accuracy would be higher in the free-response session (as 
predicted by the theory of the sequential probability-ratio 



10	 Rosenbaum et al.

test; Wald, 1947), whereas metacognitive performance 
would be higher in the interrogation session. To increase 
the generality of the task, we also modified the stimuli 
from sequences of numbers to sequences of lines (Vickers 
et al., 1985).

Method

Participants.  Fifty undergraduates from Tel Aviv Uni-
versity (34 female; age: M = 23 years, range = 21–28 years) 
participated in the experiment. Participants received 
course credit in exchange for taking part. The experiment 
was approved by the ethics committee at Tel Aviv Univer-
sity. The sample size was selected on the basis of a power 
analysis for the confidence-resolution effect in Experi-
ment 2, which showed that 50 participants were required 
to achieve a power of .90 for an α of .05.

Procedure and design.  The task was similar to that in 
the previous experiments, with a few exceptions. First, we 
altered how stimulus evidence was generated, as described 
in detail above. Second, instead of numbers, participants 
were presented with sequences of vertical lines with dif-
ferent lengths (pairs of vertical lines with lengths sampled 
from the same overlapping Gaussian distributions). Third, 
the sequence rate was changed to 0.6 s per item (the 0.6 
s consisted of 0.3 s where the stimuli were presented and 
0.3 s of a blank screen to separate distinct presentations 
of the bar stimuli). Fourth, each session consisted of two 
blocks with 40 trials each. The rest of the procedure was 
identical to that in the previous experiments.

Results

In Table 3, we report measures of choice accuracy and 
metacognitive performance, all based on nominal evi-
dence. As predicted, we found that the choice accuracy 
was significantly higher in the free-response session (as 
expected from measuring the nominal distributions in 
both tasks). In contrast, and again in line with our pre-
dictions, the confidence resolution in all three measures 

of metacognition was higher in the interrogation session 
compared with the free-response session, and there 
were significant differences in two of the measures and 
a trend in the third one (Fig. 6). Notably, the bias-free 
Type 2 AUROC metric of metacognitive sensitivity 
revealed significantly increased confidence resolution 
in the interrogation condition despite first-order perfor-
mance being lower in this condition. Seeing as choice 
accuracy is itself known to positively affect Type 2 
AUROC estimates (Fleming & Lau, 2014), this double 
dissociation is very strong evidence of a metacognitive 
advantage in the interrogation condition.

General Discussion

Across three experiments, we found that the integration- 
to-boundary strategy, which allows participants to make 
endogenous decisions on streams of evidence, has a 
cost in metacognitive performance relative to a fixed-
number-of-samples strategy in which the evidence is 
exogenously presented to the participant. Critically, this 
was the case even when the amount of evidence pre-
sented in the two cases was identical (either matched 
trial by trial in Experiments 1 and 2 or, on average, 
across trials in Experiment 3) and when any perfor-
mance differences between the two task variants were 
controlled for (no accuracy difference in Experiment 1 
and an ANCOVA in Experiment 2). Moreover, in Experi-
ment 3, we obtained a striking double dissociation 
between cognitive and metacognitive performance (Fig. 
6). As predicted by theoretical models of evidence accu-
mulation, the integration-to-boundary strategy resulted 
in higher choice accuracy but in lower metacognitive 
performance when the number of samples was the 
same, on average, as an equivalent evidence stream 
that cannot be interrupted. This double dissociation 
rules out accounts of these findings in terms of practice 
effects (as choice accuracy was lower in Session 2 than 
Session 1) or in terms of first-order performance itself 
affecting metrics of metacognition—as the change in 
metacognition is opposite in sign to the change in 

Table 3.  Average Choice Accuracy and Measures of Confidence Resolution in Experiment 3

Measure

Session Comparison

Cohen’s dFree response Interrogation t(49) p

Accuracy .85 .82 3.5 < .001 0.50
Confidence resolution 1 1.2 1.9 .06 0.27
Gamma correlation between 

confidence and accuracy
.53 .62 2.2 .029 0.31

Type 2 AUROC .69 .72 2.2 .029 0.31

Note: Accuracy is the proportion of correct responses. AUROC = area under the receiver operating characteristic 
curve.
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first-order performance. This result also supports the 
idea that although integration to boundary is optimal 
for maximizing choice accuracy, it is less optimal for 
metacognition because it leaves less variability in evi-
dence (which was not already used in the decision) to 
signal confidence.

One limitation of the study is that all participants 
were young adult students. Future experiments should 
test different populations for generalizability. A second 
limitation of the study is that the interrogation session 
was always presented second. This procedure was 
devised because we wanted to equalize the amount of 
evidence that participants sampled to the free-response 
session, and because the latter was under the partici-
pant’s control, this had to be measured first. However, 
this procedure could, potentially, result in a practice 
confound—the improved metacognitive performance 

in the interrogation session could be due to increased 
familiarity with the task. Although this improvement 
was consistently observed only in metacognitive, and 
not in choice, performance, one could reason that the 
latter was masked by the fact that choice performance 
was predicted to be lower in the interrogation protocol 
(Wald, 1947). We believe, however, that such a practice 
account is unlikely for our results. First, our participants 
received no (trial by trial) accuracy feedback, so they 
had little input to guide them in calibrating their con-
fidence responses to objective reality (Carpenter et al., 
2019). Second, we carried out two additional analyses 
to rule out explanations in terms of a practice con-
found. In a first analysis, we compared metacognitive 
performance in Experiment 3 in the first half and sec-
ond half of each session. This analysis did not reveal 
any significant effect of session half (first half: mean 
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Type 2 AUROC = .66; second half: mean Type 2 AUROC =  
.67), t(49) = 0.4, p = .68. One may still argue that the 
practice needed to obtain improvement in our task 
requires a full session to emerge (80 rather than 40 tri-
als). To rule out this possibility, we ran a control version 
of our Experiment 3 (N = 35), in which participants 
completed two consecutive 80-trial blocks of the free-
response task (for details, see the Supplemental Mate-
rial). As expected (on the basis of lack of accuracy 
feedback), there was no improvement in metacognitive 
performance between blocks (first block: mean Type 2 
AUROC = .66; second block: mean Type 2 AUROC = 
.67), t(34) = 0.49, p = .62. Together with the double 
dissociation between choice and metacognitive perfor-
mance observed in Experiment 3 (Fig. 6), the results of 
this control experiment make it unlikely that a practice 
effect could account for our key findings. Rather, we 
believe that these additional analyses support our con-
clusion that integration to boundary is beneficial for 
choice performance but has a cost in metacognitive 
performance.

Interestingly, previous studies of perceptual meta-
cognition have often relied on tasks in which the num-
ber of evidence samples is exogenously determined, 
allowing for enhanced confidence resolution. In addi-
tion, model-based measures of metacognitive efficiency 
such as meta-d′ implicitly assume an underlying SDT 
generative model of confidence, which may be suitable 
only for interrogation-like cases but not for more natu-
ralistic free-response settings in which the decision to 
terminate information search is under the participant’s 
control (Yeung & Summerfield, 2012). Future work 
should contrast these two decision strategies—integra-
tion to boundary and deciding from a fixed number of 
samples—in tasks such as wagering (Persaud et  al., 
2007), which combine choice and confidence into a 
unified performance measure, and explore alternative 
model-based metrics of metacognitive performance that 
incorporate decision time.

In addition to these differences in metacognitive per-
formance, we also found that the way in which partici-
pants generated their choice and confidence estimates 
differed in the two experimental sessions. In the free-
response task, the best-fitting choice model used inte-
gration to a collapsing boundary, whereas the 
confidence was based on both RT (which for this model 
was associated with the boundary level at response) 
and the last piece of evidence, which was likely to 
involve postdecision integration (Moran et  al., 2015; 
Pleskac & Busemeyer, 2010). Both of these factors could 
contribute to a nonzero level of confidence resolution 
in the free-response task. Indeed, because RTs tend to 
be faster for correct (compared with incorrect) responses 

(see Fig. S3 in the Supplemental Material), RT itself 
provides distinctive information on choice accuracy. An 
impact of postdecisional evidence integration on confi-
dence resolution in the free-response task is also sup-
ported by a median split of the confidence resolution 
between trials in which the response was entered before 
or after the median RT on the last frame before stimulus 
termination (Fig. 7). We reasoned that for faster RTs 
(measured from the last presented frame), there is a 
higher chance that the decision was based on evidence 
presented before the last frame, and thus this extra 
frame could serve as postdecision evidence. Consistent 
with postintegration models (Pleskac & Busemeyer, 
2010), results showed that metacognitive performance 
(Type 2 AUROC) was higher when such postdecision 
evidence was available, t(34) = 2.12, p < .05.

In the interrogation session, on the other hand, we 
found that choices were well accounted for by a signal 
detection model applied to the whole evidence stream. 
For confidence, we found that the best predictors were 
simply the total accumulated evidence or a leaky inte-
gration of the evidence. This supports the signal detec-
tion model of confidence (Figs. 1 and 3b), according 
to which, when evidence is exogenously presented (as 
in interrogation), the same information—the integrated 
evidence—is used to guide both choices and confi-
dence. This is also consistent with the fact that in the 
interrogation condition, the trial length (number of 
frames) was positively correlated with confidence. Fur-
ther analysis indicates that this was because of the 
association between time and the amount of evidence 
in this task: The correlation between confidence and 
time became null after the total evidence was partialed 
out (see Fig. S4).

To conclude, although a reliance on RT and postdeci-
sion integration allowed participants to obtain positive 
confidence resolution in the free-response task (follow-
ing integration to a collapsing boundary), this did not 
facilitate the same level of metacognitive performance 
as that obtained when confidence was based on the 
total evidence encountered, as was possible in the 
interrogation task (see also Fig. S2 in the Supplemental 
Material). Instead, our results indicate that participants 
adapted the confidence mechanism they deployed 
depending on the task contingencies and adopted dif-
ferent strategies to extract some form of metacognitive 
performance even in an integration-to-boundary setting 
in which confidence resolution was likely to be com-
promised. In particular, they relied on total evidence 
when the termination of the evidence stream was inde-
pendent of their choice, as is normatively supported by 
signal detection models. However, when faced with a 
self-terminated task, participants used integration to a 
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collapsing boundary to provide an efficient compro-
mise between optimizing choice accuracy (Malhotra 
et al., 2017; Tajima et al., 2016) and confidence resolu-
tion (see Fig. S3). In this setting, they could also rely 
on cues from both RT and postdecision evidence to 
further boost their metacognitive performance (see Fig. 
S6 in the Supplemental Material; see Persaud et al., 2007, 
for a simulation showing that the collapsing boundary 
model provides the most efficient balance of choice 
accuracy and metacognition in the context of a wagering 
task, in which confidence resolution also contributes to 
the magnitude of reward received). How such addi-
tional cues to performance are integrated with the 
available stimulus evidence remains a topic for future 
work. One possibility is that higher order mechanisms 

supporting metacognition have access to parallel streams 
of information, including one’s own actions and RT, 
allowing more efficient inference on self-performance 
(Fleming & Daw, 2017).

Conclusions

The fidelity of metacognition is instrumental to enhanc-
ing performance in a variety of contexts, such as when 
confidence is being used to guide subsequent decisions 
(Persaud et al., 2007; van den Berg et al., 2016) or when 
one is deciding whether or not to seek new information 
(Schulz et al., 2021). For example, in an exam context, 
participants can use feelings of confidence to decide 
whether their work is ready to be submitted for grading 
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or whether to continue working on it. Crucially, such 
decisions require a high degree of metacognitive com-
petence (confidence resolution)—we would not want 
to have high feelings of confidence in the context of 
low accuracy. Previous studies have focused on how 
metacognitive competence is affected by various factors, 
such as task domain and mental health, and were 
intended to unveil the neural correlates of confidence 
formation (Hoven et al., 2019). However, the impact of 
different strategies for decision-making—which might 
vary within the same individual from context to context— 
on metacognition has remained unexplored. Here, by 
using carefully controlled evidence-accumulation para-
digms informed by computational modeling, we found 
that (a) a strategy of integrating to a fixed boundary, 
although theoretically optimal for choice accuracy, has 
a cost in confidence resolution and that (b) participants 
sought to adapt the way that they formed their confi-
dence in such settings in order to retain some degree of 
metacognitive competence (Figs. 4 and 5; see the “Model-
Selection” section in the Supplemental Material). Interest-
ingly, a strategy of integrating to a collapsing boundary 
appears to be a good compromise for optimizing both 
choice accuracy and metacognition. These results further 
imply that human observers meta-optimize metacogni-
tion itself—altering how confidence is formed depending 
on the task context at hand. The mechanisms of such 
metacognitive optimization remain a rich topic for future 
investigation.
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Notes

1. If evidence is collected in discrete samples (as in our experi-
ments), the evidence trajectory may overshoot the boundary to 
a degree that could depend on choice accuracy. Thus, a small 
amount of variability may remain to support above-chance con-
fidence resolution. Figure 3a shows that this resolution is much 
lower than that obtained with other methods.
2. The confidence was determined by normalizing (minimum-
maximum normalization across all trials) the match of the extra 
sample with the decision (for further details, see the Supplemental 
Material).
3. The leaky integration achieves a higher log-likelihood, but the 
total (nonleaky) evidence is favored in terms of model complex-
ity measures (e.g., Bayesian information criterion).
4. This cannot make a difference for choice but can do so for 
confidence. For example, consider a trial that presents the fol-
lowing two-frame evidence sequence: F1 (7, 7); F2 (8, 7). Even 
though it is clear that the total evidence favors the left alterna-
tive, one can understand that the likelihood that the generating 
distribution favors the left response is not high, and this could 
be reflected in confidence judgments.
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