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Neurocomputational mechanisms of confidence in
self and others
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Computing confidence in one’s own and others’ decisions is critical for social success. While

there has been substantial progress in our understanding of confidence estimates about

oneself, little is known about how people form confidence estimates about others. Here, we

address this question by asking participants undergoing fMRI to place bets on perceptual

decisions made by themselves or one of three other players of varying ability. We show that

participants compute confidence in another player’s decisions by combining distinct esti-

mates of player ability and decision difficulty – allowing them to predict that a good player

may get a difficult decision wrong and that a bad player may get an easy decision right. We

find that this computation is associated with an interaction between brain systems implicated

in decision-making (LIP) and theory of mind (TPJ and dmPFC). These results reveal an

interplay between self- and other-related processes during a social confidence computation.
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A key feature of adaptive behaviour is an ability to estimate
confidence in our decisions in the absence of immediate
feedback. For example, we may recognize that a choice

was based on weak evidence and change our mind as conflicting
but stronger evidence comes to light1,2. Recent years have seen
substantial progress in our understanding of decision confidence.
At a computational level, an emerging consensus is that our
confidence in a choice reflects the probability that the choice is
correct as computed using Bayesian inference3–7. At a neural
level, converging evidence points to a central role for the pre-
frontal cortex in the computation of decision confidence8–10, the
mapping of this internal estimate onto explicit reports11,12, and
the integration of single-trial confidence estimates into a long-run
estimate of task performance13.

Humans are, however, highly social and many situations
require that we compute confidence not only in our own deci-
sions but also in those of others. In competitive tasks, having a
sense of who is more likely to succeed is useful for deciding
whether to compete or opt out14. In cooperative tasks, having a
sense of who is more likely to be correct is critical for assigning
appropriate weight to others’ advice15,16, or deciding whose
opinion to follow17. In addition, the confidence that others report
is often biased3, and can serve to manage social influence12,18–20,
and it is therefore useful to independently verify such reports.
However, in contrast to the case of confidence in one’s own
decisions, little is known about the neurocomputational basis of
confidence in decisions made by others.

Intuitively, the starting point for a social confidence compu-
tation is the same as in the individual case4. We should first assess
the difficulty of the decision: the easier the decision is, the higher
the probability that others will get it right. However, it is typically
not sufficient to simply simulate which choice we would have
made and how confident we would have felt about this choice.
Instead, we should recognise that others’ ability may be different
from our own: what is hard for us may be easy for others and
what is easy for us may be hard for others4. Previous studies have
investigated how we track others’ ability15,21,22, but it remains
unknown whether, or how, we integrate knowledge about others’
ability with our own assessment of decision difficulty when
computing confidence in others’ choices. Critically, it is only by
taking both of these factors into account that we can predict that
a high-ability individual may get a difficult decision wrong and
that a low-ability individual may get an easy decision right.

This requirement for integrating estimates of both decision
difficulty and others’ ability predicts that multiple brain systems
support confidence in others’ decisions. The first component, the
estimation of decision difficulty, is computationally similar in
both the individual and the social case and may therefore be
supported by similar neural substrates. For example, in the con-
text of perceptual decision-making, where decision difficulty is
varied by changing the uncertainty associated with a sensory
stimulus, we would expect that regions which support sensory
processing, such as visual motion area MT+ and lateral intra-
parietal sulcus (LIP)8,23, are also recruited when computing
confidence in others’ decisions. However, sensory representations
on their own are unlikely to be sufficient because they do not
reflect the characteristics of others’ sensory systems – that is,
others’ sensory noise. Instead, the second component to a social
confidence computation, the estimation of others’ ability, may be
provided by the so-called theory of mind (ToM) network. This
ToM network includes temporoparietal junction (TPJ) and dor-
somedial prefrontal cortex (dmPFC)24–26 and is believed to
support the representation of others’ attributes as distinct from
one’s own. In support of this prediction, human fMRI has indi-
cated that both TPJ and dmPFC are involved in the maintenance
of running estimates of others’ task performance21,22,27.

Here, we develop an experimental paradigm to identify the
components of a social confidence computation, and we combine
behavioural analysis with computational modelling to show that
people take into account both decision difficulty and others’
ability. More specifically, we asked participants to place bets
(post-decision wagers) on decisions on a random dot motion
task28 made by either themselves (self-trials) or one of three other
players (other-trials) who differed in terms of task performance.
To maximise reward on other-trials, participants should combine
an estimate of decision difficulty with distinct estimates of the
other players’ ability. In this way, participants can predict that a
good player may get a difficult stimulus wrong and that a bad
player may get an easy stimulus right. We refer to this account as
the ToM-model and we show that it provides a better fit to
participants’ post-decision wagers than alternative models which
only track decision difficulty or others’ ability. Analysis of fMRI
data acquired during task behaviour indicated that the combi-
nation of distinct estimates of decision difficulty and others’
ability was associated with an interaction between brain systems
involved in decision-making (LIP) and ToM (TPJ and dmPFC).
Our results reveal a neurocomputational interplay between self-
and other-related processes when forming confidence about
others’ decisions.

Results
Experimental paradigm. Participants (n= 21) were asked to
place post-decision wagers (PDWs) on either their own or
another player’s choices on a random dot motion task while
undergoing fMRI (Fig. 1). At the start of a trial, a screen indicated
whether they had to perform a self-trial or an other-trial. On both
trial types, participants viewed a field of moving dots inside a
circular aperture. On each update of the motion stimulus, a
fraction of dots moved coherently to the left or the right (range:
0.005–0.5), whereas the remainder moved randomly. On self-
trials, participants had to actively decide whether the average
direction of dot motion was to the left or the right. On other-
trials, participants watched the motion stimulus while the other
player decided; participants were not told which decision the
other player made.

On both trial types, a PDW screen then appeared requiring
participants to choose between a safe and a risky option. The safe
option delivered a small but guaranteed reward (range: 5–20
points). In contrast, the risky option delivered a greater reward if
the self- or other-choice was correct and a corresponding loss if
incorrect (range: 25–50 points). Each PDW thus provided an
incentive-compatible metric of participants’ confidence in a
choice being correct. Finally, participants received feedback about
the PDW outcome; participants could infer the accuracy of the
self- or other-choice from this feedback.

Participants were paired in a block-wise manner with three
other players who differed in their average choice accuracy (low:
0.55; medium: 0.75; high: 0.95). These other players were created
using pilot data from participants who had performed the
random dot motion task without a social component. Participants
were told that the other players were not currently present and
had made their decisions at another time. We highlight that our
three main factors – motion coherence, others’ ability and the
reward difference between the risky and the safe option – were, by
design, uncorrelated.

Post-decision wagering on self- and other-trials. Intuitively, the
probability that participants select the risky option should depend
on the confidence that a self- or other-choice is correct and the
difference between the rewards available under the risky and the
safe option. The higher the confidence, the higher the probability
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that the risky option returns a reward, and the larger the reward
difference, the higher the potential earnings from selecting the
risky option. However, self- and other-trials should differ in terms
of the factors that enter into a confidence computation: on both
trial types, confidence should take into account the difficulty of
the decision, but on other-trials, confidence should also take into
account the ability of the other player.

To disentangle these contributions, we used a multiple logistic
regression model to predict participants’ trial-by-trial PDWs,
with predictors including trial type (other=−0.5, self= 0.5),
motion coherence, reward difference, others’ ability (low=−0.5,
medium = 0, high= 0.5) and the interactions between trial type
and the three other terms (see Supplementary Fig. 1 for regression
coefficients under full model and separate models for self- and
other-trials). This analysis showed that the probability that
participants selected the risky option increased with both motion
coherence (Fig. 2a; coherence: t(20) = 7.78, p < 0.001) and reward
difference (Fig. 2b; reward: t(20) = 5.02, p < 0.001), and that the
impact of these factors did not depend on trial type (coherence x
type: t(20) = 0.18, p= 0.858; reward x type: t(20) = −0.44,
p= 0.664). The probability that participants selected the risky
option also increased with others’ ability (ability: t(20) = 2.85,
p= 0.010), but this effect depended on trial type (type x ability:
t(20) = −4.60, p < 0.001). Importantly, there was no effect of
others’ ability on self-trials (blue bars in Fig. 2c; ability under
separate model for self-trials: t(20) = −1.46, p= 0.161), whereas
on other-trials, the higher the ability of the other player, the
higher the probability that participants selected the risky option
(yellow bars in Fig. 2c; ability under separate model for other-
trials: t(20) = 4.52, p < 0.001). Overall, participants were more
likely to select the risky option on self- than other-trials (type:
t(20) = 4.47, p < 0.001), with participants on average selecting the
risky option on 72% of self-trials and 61% of other-trials.

Participants were not informed about the ability of the other
players but instead had to learn it from experience. An obvious
learning signal is the feedback about choice accuracy available at
the end of each trial. In line with this hypothesis, participants
were more likely to gamble on another player’s choice when the
other player’s previous choice was correct compared to when it
was incorrect (yellow bars in Fig. 2d; paired t-test: t(20) = 2.97,
p= 0.008) – a history effect which was not present for self-trials
(blue bars in Fig. 2d: paired t-test, t(21) = −0.35, p= 0.733).

Taken together, these results show that participants (1) were
equally sensitive to decision difficulty and reward characteristics

on self- and other-trials and (2) tracked the ability of the other
players and used this knowledge to guide their PDWs in a player-
dependent manner. We note that there was no effect of others’
ability on participants’ task performance on self-trials, which we
assessed using choice accuracy (logistic regression; coherence:
t(20) = 7.90, p < 0.001; ability: t(20) = −0.78, p= 0.444) and
reaction time (linear regression; coherence: t(20) = −11.98,
p < 0.001; ability: t(20) = 0.43, p= 0.674).

Computational model of confidence in self and others. Quali-
tatively, the behavioural results fit with a ToM account in which
the confidence in another player’s decisions is based on both a
self-related component, which reflects decision difficulty, and
an other-related component, which reflects the ability of the
other player. To test this interpretation formally, and to derive
markers of the latent variables that underpin participants’ beha-
viour for fMRI analysis, we compared candidate models of
participants’ PDWs.

In our task, participants should decide whether to gamble on a
choice by comparing the expected value of the risky and the safe
option, 4EV ¼ EV risky

� �� EV safeð Þ. We modelled the map-
ping between ΔEV and gamble choices using a softmax function,
PðgambleÞ ¼ softmaxð4EVÞ. We allowed the parameters of this
function to vary between trial types to accommodate individual
variation in the tendency to gamble on choices made by oneself
versus others. The expected value of the safe option is simply the
amount offered, EV safeð Þ ¼ V safeð Þ. By contrast, the expected
value of the risky option is computed by weighting the risky
offer according to the confidence in a choice being correct,
EV risky
� � ¼ P correctð Þ ´V risky

� �� 1� P correctð Þ½ � ´VðriskyÞ.
Here, we first consider the computation of confidence on self-
trials, before turning to other-trials (see the Methods for
mathematical details and Supplementary Table 1 for model
parameters).

Building on earlier work on decision confidence3,4, we
modelled participants’ confidence on self-trials using Bayesian
decision theory (self-trials in Fig. 3). In particular, we assumed
that participants represent the stimulus space as comprised of a
set of distinct motion stimuli, each defined by a direction and a
coherence. In the first version of the model, this representation
consisted of linearly spaced motion stimuli. In a modified version,
we allowed for an over-representation of low-coherence motion
stimuli, consistent with a Weber-Fechner law in which the
resolution of sensory perception diminishes for stimuli of greater

+

instruction stimulus decision gamble feedback

3 s 1.5 s1.5 s .4 s

OTHER

SELF
OR

3-6 s

–27+27 +5 –27+27 +5

You lost 27 points
Current total is 547

decision phase gamble phase

+ +

scan run 1 scan run 2 scan run 3

slairtslairttrials

subject
player 1
player 2
player 3

Fig. 1 Social random dot motion task. On each trial, participants placed a bet on a motion discrimination judgement (left or right) made by either
themselves or one of three other players who varied in terms of their ability. The bet was made by choosing between a safe option, which yielded a small
but guaranteed reward, and a risky option, which delivered a greater reward if the self- or other-choice was correct and a corresponding loss if incorrect. In
this example, the participant chose the risky option (black box), but the self- or other-choice was incorrect. If participants chose the safe option, then they
were informed what the outcome would have been had they selected the risky option. Participants were instructed how to calculate choice accuracy from
the feedback screen. Participants were paired with the three other players in a block-wise manner, and the trial type was signalled at the start of a trial. For
fMRI analysis, we refer to the time window from the onset of the motion stimulus to 3 s after the onset of the decision screen as the decision phase and the
time window from the onset of the gamble screen to the offset of the feedback screen as the gamble phase.
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c d

self
other
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Fig. 2 Behavioural results. In each panel, data are split into self-trials (blue) and other-trials (yellow). a Probability gamble (i.e., proportion of trials in which
the risky option was selected) as a function of coherence (median split). b Probability gamble as a function of the reward difference between the risky and
the safe option (median split). c Probability gamble as a function of the ability of the other players. d Probability gamble as a function of choice accuracy on
the previous trial of the same type. a–d Bar charts are empirical data, with individual participants overlaid as dots. Lines are data simulated under the best-
fitting model (ToM-model). Empirical and simulated data are represented as group mean ± 95% CI, n = 21. Source data are provided as a Source Data file.

Fig. 3 Illustration of a confidence computation for self and others under the ToM-model. All models assumed that participants’ choices and confidence
were computed on self-trials according to Bayesian decision theory. Participants represent the stimulus space as comprised of a set of distinct motion
stimuli, each defined by a direction (sign) and a coherence (absolute value). On each trial, participants receive sensory evidence sampled from a Gaussian
distribution whose mean is given by the true motion stimulus and whose standard deviation is given by a participant’s sensory noise. Participants compute
a belief state over the stimulus space given the sensory evidence and their sensory noise (blue box) and use this belief state to generate both a decision
about the motion direction and their confidence in this decision being correct. The ToM-model assumes that participants compute confidence in others’
choices by combining their belief state over stimulus space with a representation of another player’s expected accuracy for each motion stimulus (yellow
box). The latter representation – in effect, a psychometric function – is derived from an estimate of the other player’s sensory noise. This estimate is
updated at the end of each trial using a Rescorla-Wagner learning rule that takes into account the accuracy of the other player’s choice and the confidence
in this choice being correct. As a result of this update, the psychometric function becomes steeper after a correct choice (green) and shallower after an
incorrect choice (red). On both trial types, confidence is used to calculate the difference in expected value between the risky and the safe options. Finally,
the difference in expected value is entered into a softmax function to obtain the probability of selecting the risky option. The softmax parameters were
allowed to vary between self- and other-trials.
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magnitude. On each trial, participants receive noisy sensory
evidence, modelled as a sample from a Gaussian distribution
centred on the true motion stimulus. Participants then compute a
belief state over stimulus space – that is, the probability that each
motion stimulus is shown on the current trial – given the sensory
evidence and their own level of sensory noise. Finally, participants
use this belief state to generate both a decision and their
confidence in this decision being correct.

There are several ways in which a ToM account of a social
confidence computation could be implemented. However, for
consistency with earlier work on decision confidence3,4, here we
directly extended the Bayesian framework to the social case. This
ToM-model assumes that participants compute confidence in the
other player’s decision by integrating their belief state over
stimulus space with a distinct representation of the other player’s
expected accuracy for each motion stimulus (other-trials in
Fig. 3). The ToM-model integrates these representations across
the full stimulus space because participants do not know whether
the other player decided left or right. The ability representation –
equivalent to a belief about the other player’s psychometric
function – is derived from an estimate of the other player’s
sensory noise. This estimate is updated at the end of each trial
according to the difference between the observed and the
predicted success of the other player’s choice — a social
prediction error.

Under a ToM account, confidence on other-trials is influenced
by both decision difficulty and others’ ability. For completeness,
and to rule out extraneous explanations of the behavioural results,
we also considered models that only included one of these
two components. First, we considered a self-projection model
(S-model), which assumes that participants first ask themselves
which choice they would have made and how confident they
would have felt about this choice and then project this confidence
estimate onto the other player. Under the S-model, confidence on
other-trials is influenced by decision difficulty but not by others’
ability. Second, building on previous work22, we considered a
performance-tracking model (Q-model), which assumes that
participants use a Rescorla-Wagner rule to learn about the value
of each player based on their historical choice accuracy and use
this value as a proxy for confidence in their decisions. Under the
Q-model, confidence on other-trials is influenced by others’
ability but not by decision difficulty.

In keeping with the behavioural results, and in support of a
ToM account of a social confidence computation, the ToM-model
provided the best fit to participants’ PDWs; the winning model
included both a Weber-Fechner law and separate softmax
parameters for self and other (see Supplementary Fig. 2 for
model comparison). As shown in Fig. 2, the ToM-model captured
all qualitative features of the behavioural data (see Supplementary
Fig. 3 for predictions under the best-fitting version of each model
class). In addition, the ToM-model captured the trial-by-trial
evolution of participants’ PDWs for each of the three other
players (Supplementary Fig. 4).

We performed two control analyses to assess the robustness of
our modelling approach. First, we performed a model identifia-
bility analysis using the best-fitting version of each model class29.
Specifically, we simulated data under each model and then fitted
each model to these data. This analysis showed that the models
were discriminable within the constraints of our experimental
paradigm (Supplementary Fig. 5). Second, the models infer
participants’ true confidence from their PDWs – raising the
possibility that risk and/or loss aversion may have biased the
model comparison results and/or distorted the model-based
estimates of confidence for subsequent fMRI analysis30. To rule
out this possibility, we re-fitted the best-fitting version of each
model class after adding a utility function, which transforms the

expected value of the gamble options into subjective utilities and
allows for individual differences in risk and/or loss aversion30.
This analysis confirmed the ToM-model as providing the best
account of the behavioural data and showed that the model-based
estimates of confidence remained the same when inferred with or
without a utility function (Supplementary Fig. 6).

Neural basis of a social confidence computation. We next
turned to the fMRI data acquired during task behaviour to
identify neural substrates that may contribute to a social con-
fidence computation. The behavioural and modelling results
supported a ToM account in which participants compute con-
fidence in another player’s decisions by integrating distinct esti-
mates of decision difficulty and others’ ability. The first
component, a representation of decision difficulty, is directly
linked to the motion stimulus and in particular motion coher-
ence: the higher the coherence, the easier the decision. The sec-
ond component, a representation of others’ ability, must be
maintained separately from one’s own ability and learned from
feedback about the other player’s choice accuracy. We would
therefore expect brain systems traditionally involved in sensory
and social processing to interact during a social confidence
computation and in turn that the putative social areas carry
learning signals relating to others’ task performance.

To identify brain regions that were differentially activated by
self- and other-related processing, we first estimated whole-brain
contrasts between self- and other-trials during the decision and
the gamble phases (Fig. 1). During the decision phase, the self >
other contrast identified classic perceptual decision-making
regions, including extrastriate cortex, posterior parietal cortex
and cingulate cortex, and, in line with only self-trials requiring
active choice, motor regions (Fig. 4). By contrast, the other > self
contrast identified a classic ToM network, including middle
temporal gyrus, TPJ and dmPFC (Fig. 4). During the gamble
phase, the self > other contrast did not identify differential activity,
whereas the other > self contrast again identified the ToM network
(results not shown for gamble phase – see Supplementary Table 2
and Supplementary Table 3 for all clusters surviving whole-brain
correction for decision and gamble phases).

We next focused on a subset of these brain regions to assess the
neural evidence for a ToM account of a social confidence
computation; these regions were defined using independent
region of interest (ROI) masks (Fig. 5). First, we hypothesised that
visual motion area MT+, identified in a separate localiser scan,
and a human homologue of monkey LIP, encompassing posterior
parts of the superior parietal lobule and the intraparietal sulcus31,
may support a sensory representation of the motion stimulus
which informs confidence in both one’s own and others’ choices.
On this account, MT+ and LIP, implicated in sensory integration
on the random dot motion task8,32–35, should encode motion
coherence on both trial types. We surmise that the higher baseline
activity in MT+ and LIP on self-trials (Fig. 4) was driven by
decision processes specific to self-trials such as the requirement
for making an active choice. Second, we hypothesised that TPJ
and dmPFC, implicated in social inference21,22,27, may combine a
sensory representation of the motion stimulus with a distinct
representation of others’ ability as required by a social confidence
computation. On this account, TPJ and dmPFC should track
confidence in others’ choices after controlling for the sensory
representation of motion coherence. We tested these predictions
using a complementary analysis approach: we (1) visualised
temporally resolved neural encoding profiles by applying sliding-
window regressions to up-sampled single-trial ROI activity time
courses and (2) then estimated single-trial canonical hemody-
namic response functions (c-HRF) for significance testing.
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A ToM account predicts that regions supporting the formation
of a sensory representation of the motion stimulus should also
contribute to a social confidence computation. In other words, we
would expect our sensory ROIs to carry information about
motion coherence on both self- and other-trials. To test this
hypothesis, we quantified the neural impact of trial type (social;
now coded as self = −0.5 and other = 0.5), motion coherence
and their interaction. As expected under a ToM account, MT+
and LIP tracked motion coherence on both trial types (Fig. 6). In
MT+ , the response profile was the same on self- and other-trials:
the higher the coherence, the higher the activity (c-HRF
regression; social: t(20) = −7.72, p < 0.001; coherence, t(20) =
5.42, p < 0.001; interaction, t(20) = −0.85, p = 0.408; coherence
on other-trials, t(20) = 3.94, p < 0.001; coherence on self-trials,
t(20) = 3.65, p = 0.002). In contrast, the LIP response profile
differed between trial types: the higher the coherence, the higher
the activity on other-trials, but the lower the activity on self-trials
(c-HRF regression; social: t(20) = −7.86, p < 0.001; coherence,
t(20) = 0.20, p = 0.844; interaction, t(20) = 3.07, p = 0.006;
coherence on other-trials, t(20) = 2.94, p = 0.008; coherence on
self-trials, t(20) = −2.14, p = 0.045).

The LIP response pattern is consistent with previous observa-
tions of posterior parietal fMRI activity during active choice
(characteristic of self-trials) versus passive viewing (characteristic
of other-trials). When participants are required to make an active
choice, posterior parietal activity has been reported to decrease
with motion coherence34. In contrast, during passive viewing,
posterior parietal activity has been found to increase with motion

coherence36. Such a flip is what we would expect if LIP neurons
integrate sensory information into a belief state over stimulus
space – equivalent to the sensory representation in our
computational models. During active choice, the sensory
integration process terminates earlier for high-coherence than
low-coherence motion stimuli23 and bulk neural activity is
therefore likely to be lower for high-coherence than low-
coherence motion stimuli. In contrast, during passive viewing,
such early termination of a choice process does not occur and
motion coherence itself is likely to drive bulk neural activity. In
support of this explanation, previous work has shown that, when
motion coherence and reaction time are dissociated during active
choice, posterior parietal activity increases with motion coher-
ence, just as observed on other-trials8.

Having found that MT+ and LIP track motion coherence on
both trial types, we next turned to the social ROIs in order to
assess their roles in a social confidence computation. The whole-
brain analysis showed that the ToM network – including TPJ and
dmPFC – was more active on other- than self-trials during both
trial phases. However, a ToM account predicts that this network
should not only discriminate between self and other but also
differentially encode confidence for self and other. While previous
work suggests that TPJ should be selective for a social confidence
computation37,38, the potential role of dmPFC is less clear; recent
research indicates that dmPFC does not selectively encode social
information but instead supports a separation between self- and
other-related information when required by the task22,39,40. To
test these hypotheses, we quantified the neural impact of trial type
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Fig. 4 Whole-brain activations for self- and other-related processing during decision phase. Images display clusters surviving whole-brain correction (p
< 0.05, FWE-corrected for multiple comparisons at a cluster-defining threshold of p < 0.001, uncorrected) for the contrast between self- and other-trials
during the decision phase (cold: SELF > other; warm: self < OTHER). Images are shown at p < 0.001, uncorrected. All clusters surviving whole-brain
correction during the stimulus and gamble phases are detailed in Supplementary Tables 2 and 3.

Fig. 5 Anatomical masks for ROI analyses. The MT+ mask was specified for each participant using a localiser scan. The other masks were specified using
published connectivity-based parcellation atlases (see Methods).
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(social; self = −0.5 and other = 0.5), our model-based confidence
estimates (as computed under the ToM-model for both self and
other) and the interaction between these terms. To control for
low-level sensory effects, we orthogonalised the model-based
confidence estimates with respect to motion coherence.

This analysis showed that both TPJ and dmPFC encoded an
interaction between trial type and the model-based confidence
estimates (Fig. 7a; c-HRF regression; TPJ social: t(20) = 6.33,
p < 0.001; TPJ confidence, t(20) = −1.79, p = 0.089; TPJ

interaction, t(20) = −2.10, p = 0.049; dmPFC social: t(20) =
3.70, p = 0.001; dmPFC confidence, t(20) = −1.15, p = 0.264;
dmPFC interaction, t(20) =−3.44, p= 0.003). However, the nature
of the interaction effect differed between regions (Fig. 7b). In
support of selectivity for social inference, TPJ encoded the model-
based confidence estimates on other-trials only, with higher activity
when confidence was low (c-HRF regression; confidence on other-
trials, t(20) = −2.17, p = 0.043; confidence on self-trials, t(20) =
−0.60, p = 0.555). By contrast, dmPFC encoded model-based
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Fig. 6 Encoding of motion coherence in MT+ and LIP. a The time courses are coefficients from a regression in which we predicted z-scored MT+ (left)
and LIP (right) activity time courses using trial type (cyan; other = 0.5; self = −0.5), z-scored motion coherence (pink) and their interaction (green). The
insets show coefficients from an analysis of canonical HRFs (c-HRFs; asterisk indicates statistical significance, p < 0.05, one-sample t-test against zero).
b Same approach as in a, but now quantifying the impact of motion coherence separately for each trial type. a–b Data are represented as group
mean ± SEM, n = 21. Source data are provided as a Source Data file.
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Fig. 7 TPJ and dmPFC support a social confidence computation. a The time courses are coefficients from a regression in which we predicted z-scored TPJ
(left) and dmPFC (right) activity time courses using trial type (cyan; other = 0.5; self = −0.5), z-scored model-based confidence estimates as computed
under the ToM-model (pink; first orthogonalised with respect to motion coherence) and their interaction (green). The insets show coefficients from an
analysis of canonical HRFs (c-HRFs; asterisk indicates statistical significance, p < 0.05, one-sample t-test against zero). b Same approach as in a, but now
quantifying the impact of model-based confidence estimates separately for each trial type. a–b Data are represented as group mean ± SEM, n = 21. Source
data are provided as a Source Data file.
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confidence estimates on both trial types: activity decreased with
confidence on other-trials, but increased with confidence on self-
trials, although the effect on self-trials did not reach statistical
significance (c-HRF regression; confidence on other-trials, t(20) =
−2.67, p = 0.015; confidence on self-trials, t(20) = 1.79, p = 0.089).
The net effect of this inverse response profile in dmPFC is a larger
neural distinction between other- and self-trials when confidence is
low compared to when confidence is high.

Having established that TPJ and dmPFC track confidence
estimates about others’ choices, we next turned to the within- and
across-trial dynamics of a social confidence computation. We
reasoned that, if the ToM network receives a sensory representa-
tion of the motion stimulus from classic perceptual decision-
making regions and in turn furnishes this sensory representation
with a social representation of another player’s ability, then
functional connectivity between our sensory and social ROIs
should be higher on other- than self-trials. To test this hypothesis,
we performed a psychophysiological interaction (PPI) analysis
using MT+ or LIP as seed region and trial type as the
psychological variable (Fig. 8a). In line with a ToM account,
the PPI analysis revealed that connectivity between LIP and TPJ/
dmPFC was higher on other- than self-trials (Fig. 8b, c; one-
sample t-test: TPJ, t(20) = 2.50, p = 0.021; dmPFC, t(20) = 2.56,
p = 0.019). These relationships were not found for MT+ (one-
sample t-test: TPJ, t(20) = 0.51, p = 0.615; dmPFC, t(20) =
−0.80, p = 0.432).

Finally, having examined how sensory and social regions
interact to compute confidence in others’ choices, we analysed
how the representation of another player’s ability is updated with

task experience. The behavioural and modelling results indicated
that participants revised their estimate of the other player’s
sensory noise based on the difference between the accuracy of the
other player’s choice and their confidence in this choice being
correct (see schematic of learning mechanism in Fig. 3).
Consistent with a role in supporting this estimate, both TPJ
and dmPFC tracked social prediction errors as computed under
the ToM-model (Fig. 9; c-HRF regression; TPJ, t(20) = −3.18,
p = 0.005; dmPFC, t(20) = −3.12, p = 0.005). We note that these
response profiles remained after orthogonalising the social
prediction error with respect to either the outcome term
(accuracy) or the prediction term (confidence).

Discussion
Computing confidence in others’ decisions is critical for success
on a range of competitive and cooperative tasks. While previous
research has examined how we track others’ ability, little is known
about whether, or how, we combine this knowledge with an
assessment of the decision problem at hand to form a confidence
estimate. In many situations, simply knowing someone else’s
ability is insufficient for an accurate confidence computation as
the difficulty of a decision may vary substantially. For example, an
excellent medical doctor may not be able to diagnose a complex
case, whereas someone who is generally bad at mathematics may
still be able to solve a simple arithmetical problem. In situations
like these, distinct estimates of others’ ability and decision diffi-
culty are needed in order to predict whether someone else will be
successful at a given moment in time.
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Fig. 8 Functional coupling between sensory and social ROIs during a social confidence computation. a Schematic of PPI analysis testing whether the
correlation between LIP activity (seed region) and TPJ/dmPFC activity is higher on other- than self-trials. b Contrast estimates from PPI analysis (other >
self) as implemented by the Generalised PPI toolbox (asterisk indicates statistical significance, p < 0.05, one-sample t-test against zero). c Visualisation of
activity time courses driving effects documented in b. The time courses are coefficients from a regression in which we predicted z-scored TPJ/dmPFC
activity time courses using an interaction between z-scored LIP activity time courses and trial type (self = −0.5; other = 0.5), while controlling for the
main effect of each term. b–c Data are represented as group mean ± SEM, n = 21. Source data are provided as a Source Data file.
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(left) and dmPFC (right) activity time courses using z-scored social prediction errors as computed under the best-fitting ToM-model. The insets show
coefficients from an analysis of canonical HRFs (c-HRFs; asterisk indicates statistical significance, p < 0.05, one-sample t-test against zero). Data are
represented as group mean ± SEM, n = 21. Source data are provided as a Source Data file.
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Here, we addressed how people solve this problem using a
perceptual decision task in which participants placed bets on
choices about stimuli of varying difficulty made by either them-
selves (self-trials) or one of three other players (other-trials) who
differed in terms of their ability. By combining behavioural
analysis with computational modelling, we found that partici-
pants tracked the ability of each player and combined this
knowledge with an estimate of decision difficulty in order to
decide whether to gamble on the other players’ choices being
correct. Using fMRI, we found that a social confidence compu-
tation was supported by an interaction between brain systems
involved in perceptual decision-making (MT+ and LIP) and
social cognition (TPJ and dmPFC): MT+ and LIP tracked deci-
sion difficulty on both self- and other-trials; coupling between LIP
and TPJ/dmPFC increased on other-trials; and TPJ/dmPFC
tracked confidence in the other players’ choices after controlling
for decision difficulty and tracked prediction error learning about
the ability of the other players. Taken together, these results
indicate that TPJ/dmPFC augment a representation of decision
difficulty provided by LIP with a representation of the other
players’ ability.

Our winning model, the ToM-model, is a natural extension of
Bayesian models of confidence from the individual to the social
case4. In this model, decision difficulty and others’ ability are
taken into account by integrating a belief state over stimulus
space with a representation of the other players’ expected accu-
racy for each stimulus. Our goal was to test whether a social
confidence computation takes into account both decision diffi-
culty and others’ ability, rather than seeking to arbitrate between
alternative algorithms that may support this computation. For
example, people may solve the problem in a more model-free
manner, by first calculating the confidence in the decision that
they themselves would have made and then adjusting this esti-
mate by a scalar value that reflects the performance of the other
player (e.g., a combination of the S- and Q-models). Both this
heuristic account and the ToM-model embody a hypothesis that a
social confidence computation involves self- and other-related
components, but they make subtly different predictions (e.g., the
difference in confidence for a low-ability and high-ability player
depends on the level of motion coherence under the ToM-model
but is constant across levels of motion coherence under this
more model-free alternative). Future studies are needed to dis-
ambiguate these related accounts (e.g., extensive psychophysical
mapping of the relationship between motion coherence and
confidence in others’ choices).

Our confidence models were all grounded in Bayesian decision
theory on self-trials, but they differed in their solution to a social
confidence computation on other trials. The Q-model solves this
problem in a model-free manner, using running estimates of the
other players’ choice accuracy as a proxy for confidence in their
choices. In contrast, the best-fitting model, the ToM-model,
solves the problem in a Bayesian manner, by integrating distinct
representations of decision difficulty and others’ ability. We
acknowledge that the computational basis of (non-social) con-
fidence is still debated, with different studies supporting either
Bayesian4,8,41–43 or non-Bayesian44–46 accounts. However, the
grounding of our confidence models in Bayesian decision theory
is unlikely to have biased our results. In keeping with standard
signal detection theory, we modelled the sensory evidence as a
single sample from a Gaussian distribution. Under these con-
straints, Bayesian and non-Bayesian confidence estimates
are monotonically related and will therefore make similar
predictions3.

The question of how people infer what others think, feel or
intend, and the relationship between inference about one’s own
and others’ internal states, has attracted widespread attention in

philosophy, psychology and neuroscience26,47,48. Our findings are
in line with a view that self- and other-inference are distinct
processes that involve distinct representations of oneself and
others24,49 – and go against a view that other-inference relies on
self-projection50,51 or that self-inference co-opts processes for
inference about others48. At a behavioural level, we found that a
social confidence computation involves distinct self- and other-
related components – people did not simply simulate which
choice they would have made and how confident they would have
felt about this choice. At a neural level, we found that self- and
other-related processes activated distinct brain systems. In fur-
ther support of this neural dissociation, a repetition suppression
analysis also indicated that LIP was differentially activated by self-
related processes, whereas TPJ and dmPFC were differentially
activated by other-related processes (Supplementary Fig. 7). In
particular, the higher level of LIP activity on self-trials was sup-
pressed on self-trials preceded by self-trials as compared to self-
trials preceded by other-trials, whereas the higher level of TPJ and
dmPFC activity on other-trials was suppressed on other-trials
preceded by other-trials as compared to other-trials preceded by
self-trials. Under the repetition suppression framework, such
neural attenuation occurs when information for which neuronal
populations are selective is repeatedly represented in close tem-
poral succession52.

Our study characterises the neurocomputational basis of a
common social problem – how we can make predictions about
the choice accuracy of another system than oneself. As is true for
most social neuroscience studies, it is possible that one could
devise an analogous task where the other system is not human but
artificial (e.g., a motion detection algorithm) and find that this
task recruits similar neurocomputational mechanisms. However,
this result would not alter the importance of these neuro-
computational mechanisms for understanding human social
behaviour. While our study was not designed to address the issue
of social uniquenes53, the involvement of a ToM network in the
computation of confidence in other players’ choices supports that
our task taps into fundamental social processes. In addition, the
recruitment of a ToM network supports our interpretation that
participants computed social confidence by estimating the other
players’ sensory noise – a process akin to inference about latent
mental states which similarly can explain variability in others’
behaviour – and not simply by averaging trial-by-trial feedback
about the other players’ choices.

More broadly, our study extends our understanding of the
neural basis of social cognition. TPJ and dmPFC have previously
been shown to support learning of summary statistics that reflect
others’ ability on a variety of tasks, including the reliability of
advice on a bandit task27, recency-weighted performance on a
reaction-time task22 or prediction accuracy on a stock-market
task21. Our results show that TPJ and dmPFC also support the
integration of such knowledge about others’ ability with infor-
mation about the current task state – a process that facilitates
accurate predictions about others under conditions of varying
task difficulty. There were, however, subtle differences between
the activity profiles of TPJ and dmPFC. In line with a hypothesis
that TPJ is selective for social inference, TPJ tracked the model-
based confidence estimates only on other-trials. By contrast,
dmPFC tracked these estimates on both trial types but in an
inverse manner – resulting in a larger neural distinction between
self and other when confidence was low. This result fits with
evidence that dmPFC supports a separation between self- and
other-related information in social contexts22,39,40.

While TPJ involvement was restricted to other-evaluation in
the current study, it remains plausible that TPJ may be involved
in self-evaluation in other situations. On other-trials, but not self-
trials, participants had to learn novel mappings between stimulus
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space and choice accuracy. In addition, unlike on self-trials,
participants did not observe the other player’s choice and had to
consider that either choice could have been made. It remains to
be seen whether self-evaluation co-opts putative social brain areas
in situations where one’s own ability needs to be learned across
time48 or where counterfactual thinking is required54.

In summary, our study shows (1) that people form confidence
in others’ decisions by flexibly combining knowledge about oth-
ers’ ability with an assessment of the decision problem at hand
and (2) that this process is supported by an interaction between
brain systems traditionally involved in decision-making and
social cognition. We highlight, however, that our study only
addresses one of the two sides of a social confidence computation.
In many cases, adaptive control of social behaviour requires not
only that we can predict the success of others’ choices – as
examined here – but also that we can infer how confident others
themselves feel about these choices. For example, in a strategic
game like chess, our response to an opponent’s mistake may
depend on whether we think that they themselves realise that they
have erred. How our confidence in others interacts – in a
potentially reciprocal manner – with inference about others’
confidence awaits further study.

Methods
Participants. Participants performed a random dot motion task in a prescan and a
scan session conducted on the same day. Twenty-two adults with no history of
psychiatric or neurological disorders took part in the study. One participant was
excluded due to poor performance in the pre-scan session, leaving twenty-one
participants for analysis (12 female, mean ± SD age = 22.6 ± 4.4 years). Participants
provided informed consent, and the study was approved by New York University’s
University Committee on Activities Involving Human Subjects. Participants
received a show-up fee of US$15, an additional US$25 for completing the MRI scan
and were informed they could earn an additional performance-based bonus (in
reality, all participants received a US$9 bonus).

Experimental paradigm
Random dot kinematograms. Participants viewed random dot kinematograms
(RDKs) contained in a circular aperture (7 degrees in diameter). Each RDK was
made up of three independent sets of dots (each dot was 0.12 degrees in diameter)
shown in consecutive frames. Each set of dots were shown for one frame (about
16 ms) and then replotted again three frames later (about 50 ms). Each time a set of
dots was replotted, a subset of the dots, determined by the motion coherence, θ,
was displaced in the direction of motion at a speed of 6 degrees s−1, whereas the
rest of the dots were displaced at random locations within the aperture. The motion
direction, k, was to the left or to the right along the horizontal meridian. The use of
three sets of dots means, for example, that dot positions in frame one are correlated
with dot positions in frame four, seven and so forth. The dot density was fixed at
30 dots degrees−2 s−1.

Pre-scan session: familiarisation. Participants were familiarised with the basic
random dot motion task prior to the scan session. Each trial began with the
presentation of a fixation cross at the centre of a circular aperture. After a fixed
delay (0.5 s), participants viewed an RDK (0.4 s). Once the RDK had terminated,
participants were asked to indicate whether the net direction of dot motion was to
the left or to the right along the horizontal meridian. In particular, participants
were presented with a white box on the left and a white box on the right, corre-
sponding to the two choice options. Once a choice had been made, the outline of
the chosen option turned black (0.5 s), and participants received feedback about
choice accuracy (low-pitched tone: error; high-pitched tone: correct). If partici-
pants did not respond within 4 s, then the choice was scored as an error. The
coherence, θ, was taken from the set, Θ 2 f0:03; 0:06; 0:12; 0:24; 0:48; 1g, coun-
terbalanced across trials. The motion direction, k, was sampled randomly from left
or right. Participants completed 240 trials.

Scan session: self-other. Participants performed the same random dot motion task
again, except that they were now also required to place post-decision wagers
(PDWs) on the accuracy of either their own or another player’s choices.

Each trial began with the presentation of a fixation cross at the centre of a
circular aperture (1.5 s). Participants then viewed a message instructing either a
‘self-trial’ or an ‘other-trial’ (1.5 s). On both trial types, after a brief delay (0.5 s),
participants viewed an RDK (0.4 s). After the RDK had terminated, participants
entered the choice screen, with the fixation cross and the circular aperture
remaining visible. On self-trials, participants actively decided about the net
direction of dot motion. On other-trials, participants passively viewed the screen

while the other player made a decision about the motion stimulus; participants
were not informed whether these decisions were left or right. On both trial types,
the circular aperture changed its colour to black once a choice had been made. The
other player’s choice reaction time was sampled uniformly from the range 0.5–1 s.
On self-trials, if participants did not respond within 3 s, then the trial was aborted –
participants had to wait for the duration that a full trial would have taken before
proceeding to the next trial. The delay between the offset of the RDK and the offset
of the choice screen was sampled uniformly from the range 3–6 s.

Participants were then presented with a PDW screen (3 s) containing a safe and
a risky option, indicated by a white box on each side of the screen (random
assignment). The safe option, indicated by a blue circle, delivered a small but
certain reward regardless of choice accuracy. The risky option delivered a larger
reward, indicated by a green circle, if the self- or other-choice was correct, and a
corresponding loss, indicated by a red circle, if the self- or other-choice was wrong.
The safe value was drawn uniformly from the range 5 to 20 points, and the risky
value was drawn uniformly from the range 25 to 50 points. Once participants had
made a PDW, they were presented with a feedback screen (1.5 s). The screen
indicated the chosen PDW option (relevant box highlighted in black) and the
accuracy of the choice (if correct, the green circle maintained its colour, whereas
the red circle turned white, and if incorrect, the red circle maintained its colour,
whereas the green circle turned white). In this way, participants were informed
about the outcome on the current trial as well as the outcome that would have been
obtained had they chosen the other PDW option. In addition, the screen also
indicated the total earnings accumulated up to the current trial. Participants started
the scan session with 500 points and were told that their performance-based bonus
depended on the total amount of points accumulated across the experiment. If
participants did not make a PDW within 3 s of the PDW onset, then they lost the
points associated with the safe option.

Participants performed 3 blocks (scan runs) consisting of 40 trials, with 20 self-
trials and 20 other-trials randomly interleaved (120 trials in total). On each block,
participants were paired with a new player. All participants faced the same three
players. We created the three players using a pilot dataset of random dot motion
decisions obtained from previous participants who had visited the lab. We
identified three pilot participants who on average achieved about 60% (low ability),
75% (medium ability) and 90% (high ability) choice accuracy and then sub-selected
20 trials, which covered a range of coherences (0.001–0.5), had an even split of
leftwards and rightwards motion and satisfied the above requirements for choice
accuracy. On each block, the same set of motion stimuli were shown on self-trials
and other-trials but in a randomised order. The order of the three players across
blocks was randomised across participants.

FMRI
Procedure. The scan session consisted of 5 scan runs. First, we acquired structural
images. Second, participants performed the self-other task over 3 runs (3 × 40 =
120 trials; 252 volumes per run). Lastly, we ran a localiser scan in which partici-
pants viewed alternating displays (12 s) of static and coherently moving dots (2 ×
10 = 20 displays; 215 volumes).

Acquisition. MRI data were acquired on a 3 T Siemens Allegra scanner at New York
University’s Center for Brain Imaging. T1-weighted structural images were
acquired using a 3D MPRAGE sequence: 1 ×1 × 1 mm resolution voxels;
176 sagittal slices. BOLD T2*-weighted functional images were acquired using a
Siemens epi2d BOLD sequence: 3 × 3 × 3 mm resolution voxels; 42 transverse
slices, 64 ×64 matrix; TR = 2.24 s; TE = 30 ms; slice tilt = −30 degrees T > C; slice
thickness = 3 mm; interleaved slice acquisition. Local field maps were recorded for
distortion correction of the acquired EPI data.

Pre-processing. MRI data were pre-processed using SPM12 (Wellcome Trust,
London) The first 5 volumes of each functional run were discarded to allow for T1
equilibration. Functional images were slice-time corrected, re-aligned and un-
warped using the collected field maps55. Structural T1-weighted images were co-
registered to the mean functional image of each participant using the iterative
mutual-information algorithm. Each participant’s structural image was segmented
into grey matter, white matter and cerebral spinal fluid using a nonlinear defor-
mation field to map it onto a template tissue probability map56. These deforma-
tions were applied to both structural and functional images to create new images
spatially normalised to the Montreal Neurological Institute (MNI) space and
interpolated to 2 × 2 × 2mm voxels. Normalized images were spatially smoothed
using a Gaussian kernel with full-width half-maximum of 8 mm. Motion correction
parameters estimated from the re-alignment procedure and their first temporal
derivatives (12 regressors in total) were included as confounds in the first-level
analysis for each participant.

Quantification and statistical analysis
Trial exclusion. We excluded trials when a decision was not made during the choice
window or when a gamble was not made during the gamble window.

Behavioural analysis. We used multiple logistic regression to predict participants’
PDWs. We performed separate regressions for each participant, and then tested for
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group-level significance by comparing coefficients pooled across participants to
zero (p < 0.05, one-sample t-test). We z-transformed all continuous predictors.

Computational models of confidence. On each trial, a participant is asked to make a
post-decision wager (PDW) about either their own choice or the choice of another
player. On self-trials, the participant actively makes a choice about the motion
stimulus. On other-trials, the participant is presented with the motion stimulus but
not the other’s choice. The participant has to decide between a risky and a safe
option, by combining the option values with an estimate of the probability that the
choice is correct. We first consider models of PDWs on self-trials, before turning to
other-trials. The models are grounded in Bayesian decision theory4,57.

Sensory sample: On each trial, a participant, s, receives a sensory sample,
x, randomly sampled from a Gaussian distribution, x 2 Nðkθm; σsÞ, where
m 2 M ¼ f1; 2; ¼ ; ng, θ 2 Θ ¼ fθ1; θ2; ¼ ; θng is the motion coherence, k 2 K ¼
f�1; 1g is the motion direction (−1: left; 1: right), n is the number of levels of
coherence and σs is the participant’s level of sensory noise.

Self-trials: The participant represents the task as comprised of a set of states ðk;mÞ,
corresponding to the set of possible motion stimuli defined by direction and
coherence, kθm . The participant computes a belief distribution over states given
their sensory sample, x. The probability of each state conditional on x is given by:

P k;mjxð Þ ¼ P xjm; kð ÞPðm; kÞ
∑
k0
∑n

i¼1P xjmi; k
0� �
Pðmi; k0Þ

¼ P xjm; kð Þ
∑
k0
∑n

i¼1P xjmi; k0
� � ð1Þ

Note that we relied on the fact that all states are equally probable by design
(with probability 1=2n). The likelihood of x conditional on a state is given by:

P xjk;mð Þ ¼ φ x; kθm; σs
� � ð2Þ

where φ is the normal probability density function evaluated at x:

φ x; μ; σ
� � ¼ 1

σ
ffiffiffiffiffi
2π

p e
�ðx�μÞ2

2σ2 ð3Þ

The participant uses the belief distribution over states to compute the
probability that the motion direction is leftwards (k ¼ �1) and rightwards (k ¼ 1):

P k ¼ �1jxð Þ ¼ ∑m2MP xjm; k ¼ �1ð Þ
∑k0 ∑m2M Pðxjm; k0Þ

P k ¼ 1jxð Þ ¼ ∑m2MP xjm; k ¼ 1ð Þ
∑k0 ∑m2M Pðxjm; k0Þ

ð4Þ

The participant makes their decision, r, by comparing the posteriors over
motion direction:

r xð Þ ¼ �1 if P k ¼ �1jxð Þ > P k ¼ 1jxð Þ
1 if P k ¼ �1jxð Þ < P k ¼ 1jxð Þ

�
ð5Þ

Finally, the probability that the choice is correct can be computed directly using
the posteriors over motion direction relative to the chosen action:

P correctjxð Þ ¼ P k ¼ rjxð Þ ¼ P k ¼ �1jxð Þ if r ¼ �1

P k ¼ 1jxð Þ if r ¼ 1

�
ð6Þ

Other-trials: Participants were paired with three players of varying ability,
j 2 J ¼ f1; 2; 3g. We consider below different models of how participants compute
confidence in player j’s choices and how participants learn about player j’s ability.

Self-projection (S-model): A simple way to compute confidence in another player’s
choice is to apply the same model to the other player as one applies to oneself.
Under this model, the participant simulates what choice they themselves would
have made and how confident they would have felt about this choice – as if they
were the other player.

The other player’s posteriors over motion direction are calculated as:

P k ¼ �1jx; j� � ¼ P k ¼ �1jx; sð Þ
P k ¼ 1jx; j� � ¼ P k ¼ 1jx; sð Þ ð7Þ

The other player’s choice is calculated as:

r xð Þ ¼ �1 if P k ¼ �1jx; j� �
>P k ¼ 1jx; j� �

1 if P k ¼ �1jx; j� �
<P k ¼ 1jx; j� �

(
ð8Þ

The participant’s confidence in the other player’s choice is then calculated as:

P correctjx; j� � ¼ P k ¼ rjx; j� � ¼ P k ¼ �1jx; j� �
if r ¼ �1

P k ¼ 1jx; j� �
if r ¼ �1

(
ð9Þ

Note that the S-model does not learn about the other player’s ability.

Simple value learner (Q-model): An alternative strategy for estimating confidence
in another player’s choice is to keep a running estimate of the value (correctness) of
their choices, QðjÞ, where j is the other player. This can be done compactly using a

Rescorla-Wagner update rule:

QðjÞtþ1:¼ Q j
� �

t þ αδt ð10Þ
where t indicates the trial, α is a learning rate and δt is the difference between the
current outcome ot (correct = 1; incorrect = 0) and the current estimate, QðjÞt :

δt ¼ ot � QðjÞt ð11Þ
The participant’s confidence in the other player’s choice is then calculated as:

P correctjj� � ¼ QðjÞ ð12Þ
We set QðjÞt¼0 ¼ 0:75 for each player j. Note that, unlike the S-model, the

Q-model is blind to the effect of coherence on the other player’s chance of success.

Theory of mind (ToM-model): A more sophisticated strategy is to maintain a
running estimate of another player’s sensory noise – that is, a model of their
sensory system – and use this estimate to compute confidence in their choices. In
the absence of shared error variance between the participant’s and the other
player’s sensory sample (i.e., no noise correlation), the participant’s prediction
about the other player’s success should take into account (1) the posterior prob-
ability that the world is in a given state, ðk;mÞ, given their own sensory sample, x,
and (2) the other player’s state-dependent performance (i.e., their expected accu-
racy in each state) given their estimated sensory noise, σ j . The prediction about the
other player’s success is thus given by:

Pj correctjxð Þ ¼ ∑
k

∑
m2M

Pðm; kjxÞPjðcorrectjm; kÞ ð13Þ
where Pj denotes the probability that the other agent j makes a correct response.
The first term, the belief distribution over states, is calculated using σs , and the
second term, the state-dependent performance of the other player, is calculated
using σ j :

Pjðcorrectjm; kÞ ¼
ϕ 0; kθm; σ j
� �

if kθm < 0

1� ϕ 0; kθm; σ j
� �

if kθm > 0

8><
>: ð14Þ

where ϕ is the cumulative normal distribution:

ϕ y; μ; σ
� � ¼ 1

σ
ffiffiffiffiffi
2π

p
Z y

�1
e
�ðz�μÞ2

2σ2 dz ð15Þ
The estimate of the other player’s sensory noise is updated using an

approximation to the Rescorla-Wagner rule:

σ j;tþ1 ¼ σ j;t þ αδt=Dðx; σ j;tÞ ð16Þ
where δ is a prediction error as in the Q-model and Dðx; σ jÞ is the following
derivative:

D x; σ j
� �

¼ dPj correctjxð Þ
dσ j

ð17Þ

In short, we want to define an update to the estimate of the other player’s
sensory noise, ηt , such that the prediction about the other player’s success,
Pjðcorrectjx; σ j;t þ ηtÞ, will be equal to Pjðcorrectjx; σ j;tÞ þ αδt :

Pjðcorrectjx; σ j;t þ ηtÞ ¼ Pjðcorrectjx; σ j;tÞ þ αδt ð18Þ
We can approximate the left-hand term around σ j;t linearly. So, we obtain:

Pjðcorrectjx; σ j;tÞ þ Dðx; σ j;tÞηt ¼ Pjðcorrectjx; σ j;tÞ þ αδt ð19Þ
Or

σ j;tþ1 ¼ σ j;t þ αδt=Dðx; σ j;tÞ ð20Þ
The derivative of the prediction with respect to the parameter is calculated as:

Dðx; σ jÞ ¼ ∑m2M;k¼± 1
dP m; kjxð Þ

dσ j
Pj correctjm; k½ � þ Pðm; kjxÞ dPj correctjm; k½ �

dσ j

 !

¼ ∑m2M;k¼± 1 Pðm; kjxÞ dPj correctjm; k½ �
dσ j

 !

ð21Þ
Because Pðm; kjxÞ is not a function of σ j , its derivative is 0.

The term
dPj correctjm;k½ �

dσ j
is calculated as:

dPj correctjm; k½ �
dσ j

¼ � θm
σ2j

ffiffiffiffiffi
2π

p e
� θmð Þ2

2σ2
j ¼ � θm

σ j
φ 0;θm; σ j
� �

ð22Þ

We thus have:

Dðx; σ jÞ ¼ � 1
σ j
∑m2M;k¼ ±1½P m; kjxð Þθm φ 0; θm; σ j

� �
� ð23Þ

The linear approximation to the Rescorla-Wagner rule may result in numerical
overflow in a small number of cases (e.g., when σ j is extremely low and x is extremely
high). To avoid this issue, we implemented a proposal mechanism under which we
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iteratively adjusted the update term, αδt=Dðx; σ j;tÞ, until jPjðcorrectjx; σ j;t þ ηtÞ �
ðPjðcorrectjx; σ j;tÞ þ αδtÞj < 0:001.

Post-decision wagering: In all models, PDWs are based on the expected values of
the risky and the safe options:

EVrisky ¼ P correctjx; að ÞVrisky � ½1� P correctjx; að Þ�Vrisky

EVsafe ¼ Vsafe

ð24Þ

where a indicates the agent (participant or other) and V indicates the option value.
To account for individual differences in the propensity to gamble on a decision

and sensitivity to changes in expected value, we modelled the probability of
selecting the risky option using a softmax function:

P risky
� � ¼ 1

1þ e�½β0þβ1 EVrisky�EVsafeð Þ� ð25Þ

Model variations: We considered versions of the above models where the softmax
bias, β0, and/or temperature, β1, could vary between self- and other-trials and
where the representation of the stimulus space, M, was rescaled according to a
power law (using a factor p). In brief, we rescaled each state as m0 ¼ mp and
normalised the resulting state space, M0 , using the minimum and maximum values
of the original stimulus space, M. The rescaling allowed for a higher density of
motion stimuli at low (p > 1) or high (p < 1) stimulus intensities (where p ¼ 1
preserves the original stimulus space). There were thus 24 models: 3 (S, Q, ToM) ×
2 (same versus different bias, β0, for self and other) × 2 (same versus different
temperature, β1, for self and other) × 2 (linearly-spaced versus rescaled stimulus
space).

Model fitting and comparison. We used variational Bayesian inference as imple-
mented in Stan58 to fit the models to the behavioural data. We used a hierarchical
fitting procedure where group-level parameters constrain participant-level para-
meters (see Supplementary Table 1 for full parameter space). We fitted each model
using the following specifications: maximum number of iterations = 4000; number
of samples for Monte Carlo estimation of objective function = 200; number of
iterations between evaluation of objective function = 100; convergence tolerance
on the relative norm of the objective = 0.0001. To generate trial-by-trial predic-
tions about each participant’s behaviour, and obtain estimates of the latent model
variables, we drew 500 samples from the posterior distributions over fitted para-
meters (the ‘generated quantities’ block in Stan), calculated the trial-by-trial values
for each set of samples and then averaged across these 500 iterations. To assess the
ability of each model to account for a participant’s data, we computed the log-
likelihood of their trial-by-trial PDWs under each draw of parameters and applied
leave-one-out cross-validation using Pareto-smoothed importance sampling (PSIS-
LOO) and the widely applicable information criterion (WAIC) – both methods for
estimating pointwise out-of-sample prediction accuracy under a Bayesian model59.
We performed these steps 4 times for each model using different random seeds and
averaged all outputs across the 4 runs. The results of the model comparison are
shown in Supplementary Fig. 2.

Model identifiability. As a quality control of our modelling approach, we conducted
a model identifiability analysis29. We selected the best-fitting version of each model
class (Supplementary Fig. 2), simulated 200 datasets for each of the three models
and then fitted the three models to the simulated datasets; each dataset mirrored
our study in terms of participants, task variables and trials. Based on the model
comparison results for all 200 iterations, we computed a confusion and an inver-
sion matrix. A confusion matrix shows the probability that model Y provided the
best fit to data generated by model X. By contrast, an inversion matrix shows the
probability that model X generated the data given that model Y provided the best
fit – in other words, if model Y wins the model comparison, which model is most
likely to be the true model? As shown in Supplementary Fig. 5, the model iden-
tifiability analysis shows that all three models were discriminable within the con-
straints of our experimental paradigm.

Risk and/or loss aversion. Our models inferred participants’ confidence based on
PDWs. Previous research has shown that PDWs are subject to risk and loss
aversion30 – raising the possibility that these factors may have biased the model
comparison and/or distorted the model-based estimates of confidence for fMRI
analysis. To rule out this possibility, we selected the best-fitting version of each
model class (Supplementary Fig. 2) and re-fitted these models to the behavioural
data after including a utility function. This function transforms the expected values
of the gamble options into subjective utilities and allows for individual variation in
risk and/or loss aversion. Formally, we computed the expected values of the risky
and the safe options as follows:

EVrisky ¼ P correctjx; að ÞVR
risky � ½1� P correctjx; að Þ�SVT

risky

EVsafe ¼ VR
risky

ð26Þ

where R, T and S parameterise the utility function, with S controlling loss aversion
and R and T controlling risk-seeking/risk-aversion in the gain and loss domains,

respectively. In keeping with previous work30, we restricted R and T to the range
0–1 (see Table S1 for all parameters). The ToM-model continued to provide the
best fit to the behavioural data, and the model-based confidence estimates were
highly correlated (Pearson’s r > 0.9 for all participants) between the original ToM-
model and the ToM-model with a utility function (Supplementary Fig. 6).

For completeness, we visualised the fitted group-level utility function under the
ToM-model. In line with classic behavioural economics results60 and earlier work
on the drivers of PDWs30, this visualisation showed that losses loomed larger than
gains (Supplementary Fig. 6).

Although not shown, we highlight that all model-based fMRI results remained
the same when performed using the ToM-model with a utility function.

FMRI
Whole-brain general linear models: The whole-brain analysis shown in Fig. 4 was
based on a single event-related general linear model (GLM1). We separated trials
into self-trials and other-trials and specified separate ‘condition’ regressors for the
decision phase (i.e., boxcar from RDK onset to 3 s after decision onset) and the
gamble phase (i.e., boxcar from gamble onset until feedback offset) for each trial
type (yielding 4 condition regressors in total). We included motion parameters as
‘nuisance’ regressors. Regressors were convolved with a canonical hemodynamic
response function. Regressors were modelled separately for each scan run and
constants were included to account for between-run differences in mean activation
and scanner drifts. A high-pass filter (128 s cut-off) was applied to remove low-
frequency drifts. Group-level significance was assessed by applying one-sample t-
tests against zero to the first-level contrast images. We report clusters significant at
p < 0.05, FWE-corrected for multiple comparisons, with a cluster extent of 10
voxels or more and a cluster-defining threshold of p < 0.001, uncorrected.
Numerical simulations and tests of empirical data collected under the null
hypothesis show that this combination of cluster-defining threshold and random
field theory produces appropriate control of false positives61.

Regions of interest: ROI masks for MT+ were created using the localiser scan: we
created a group mask using the second-level contrast between dynamic and static
motion, and then, for each participant, created a MT+ mask (8-mm sphere)
around their peak activity inside the group mask. ROI masks for LIP, TPJ and
dmPFC were created using published connectivity-based parcellation atlases: LIP
was defined as the union of areas SPLD and SPLE in the atlas developed by Mars
et al.31; TPJ was defined as area TPJp in the atlas developed by Mars et al.62; and
dmPFC was defined as area 9 in the atlas developed by Neubert et al.63. All ROI
masks were bilateral.

Psychophysiological interaction analysis: To assess changes in connectivity between
visual and social ROIs as a function of trial type, we carried out a psychophysio-
logical interaction (PPI) analysis using the Generalised PPI toolbox for SPM (gPPI;
http://www.nitrc.org/projects/gppi/). The toolbox takes one GLM as its input (here,
GLM1) and then creates a new GLM in which the deconvolved activity of the seed
region (MT+ or LIP) is assigned to separate regressors dependent on the status of
the psychological variable (self versus other) and re-convolved with a canonical
hemodynamic response function. We extracted average contrast estimates within
an ROI for each participant and then used these estimates for group-level testing.

Single-trial activity time courses: We transformed each ROI mask from MNI to
native space and extracted preprocessed BOLD time courses as the average of
voxels within the mask. For each scan run, we regressed out variation due to head
motion as specified above, applied a high-pass filter (128 s cut-off) to remove low-
frequency drifts, and oversampled the BOLD time course by a factor of ~23 (time
resolution of 0.144 s; spline interpolation). For each trial, we extracted activity
estimates in a 14 s window around an event of interest (RDK or feedback onset).

Canonical hemodynamic response functions: In addition to the whole-brain GLM
analyses described above, we estimated whole-brain GLMs which included a
separate regressor for each trial64. For the stimulus-related analyses, the regressors
were boxcars spanning RDK presentation. For the feedback-related analysis, the
regressors were boxcars spanning feedback delivery. Each of these regressors was
convolved with a canonical hemodynamic response function. We included motion
parameters as ‘nuisance’ regressors. Regressors were modelled separately for each
scan run and constants were included to account for between-run differences in
mean activation and scanner drifts. A high-pass filter (128 s cut-off) was applied to
remove low-frequency drifts.

One consideration when obtaining single-trial activity estimates as a beta time
series is that a beta for a given trial can be affected by acquisition artefacts that occur
together with that trial (e.g., scanner pulse artefacts). Therefore, for each participant,
we computed the grand-mean beta estimate across both voxels and trials and
excluded any trial whose mean beta estimate across voxels was 3 SDs below or above
this grand mean64. Finally, we used the ROI masks to extract single-trial ROI
activity estimates under the canonical hemodynamic response function.

Software. The task was programmed in MATLAB 2014b using Psychtoolbox
3.0.1265,66. The behavioural data were analysed in MATLAB 2015b. Neural data
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were analysed in MATLAB 2015b using SPM12 and the Generalised PPI toolbox
13.1. Computational models were fitted using RStudio 1.0.153 and Stan 2.19.1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting behavioural and neural analyses are available on GitHub: https://github.
com/danbang/article-self-other. Unthresholded group-level statistical maps are available
on NeuroVault: https://neurovault.org/collections/9553/. Source data are provided with
this paper.

Code availability
Code for reproducing behavioural and neural analyses are available on GitHub: https://
github.com/danbang/article-self-other.
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