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Abstract

Metacognition is the ability to reflect on, and evaluate, our cognition and behaviour.

Distortions in metacognition are common in mental health disorders, though the neural

underpinnings of such dysfunction are unknown. One reason for this is that models of key

components of metacognition, such as decision confidence, are generally specified at an

algorithmic or process level. While such models can be used to relate brain function to psy-

chopathology, they are difficult to map to a neurobiological mechanism. Here, we develop

a biologically-plausible model of decision uncertainty in an attempt to bridge this gap. We

first relate the model’s uncertainty in perceptual decisions to standard metrics of metacogni-

tion, namely mean confidence level (bias) and the accuracy of metacognitive judgments

(sensitivity). We show that dissociable shifts in metacognition are associated with isolated

disturbances at higher-order levels of a circuit associated with self-monitoring, akin to neuro-

psychological findings that highlight the detrimental effect of prefrontal brain lesions on

metacognitive performance. Notably, we are able to account for empirical confidence judge-

ments by fitting the parameters of our biophysical model to first-order performance data,

specifically choice and response times. Lastly, in a reanalysis of existing data we show that

self-reported mental health symptoms relate to disturbances in an uncertainty-monitoring

component of the network. By bridging a gap between a biologically-plausible model of con-

fidence formation and observed disturbances of metacognition in mental health disorders

we provide a first step towards mapping theoretical constructs of metacognition onto dynam-

ical models of decision uncertainty. In doing so, we provide a computational framework for

modelling metacognitive performance in settings where access to explicit confidence

reports is not possible.
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Author summary

In this work, we use a biologically-plausible model of decision uncertainty to show that

shifts in metacognition are associated with disturbances in the interaction between deci-

sion-making and higher-order uncertainty-monitoring networks. Specifically, we show

that uncertainty modulation is associated with metacognitive bias, sensitivity, and effi-

ciency, with no effect on perceptual sensitivity. Our approach not only enables inferences

about uncertainty modulation (and, in turn, these facets of metacognition) from fits to

first-order performance data alone–but also provides a first step towards relating dynam-

ical models of decision-making to metacognition. We also relate our model’s uncertainty

modulation to psychopathology, and show that it can offer an implicit, low-dimensional

marker of metacognitive (dys)function–opening the door to richer analysis of the interac-

tion between metacognitive performance and psychopathology from first-order perfor-

mance data.

Introduction

Computational psychiatry [1–4] employs mechanistic and theory-driven models to relate

brain function to phenomena that characterise mental health disorders [2,5–8]. Typically,

algorithmic-level models [9] describe the computational processes that realise specific brain

functions and return theoretically meaningful parameters that may vary between subjects.

Some of these algorithmic models (e.g. reinforcement learning; [8]) closely relate to the func-

tions of discrete brain circuits [10–12]. However, there remains a high degree of imprecision

when relating diverse sets of algorithms to circuit-level disturbances, potentially limiting our

understanding of, and treatments for, mental disorders.

One proposal is that the same neural circuit disturbances can be associated with several

(often unrelated) changes in behaviour [13]. Here detailed biophysical models [14–16] may

provide tools for understanding mental health disorders in terms of precise disturbances at the

microcircuit level. For instance, [14] showed that an imbalance in excitatory/inhibitory synap-

tic connections in a spiking neural network model can explain working memory deficits asso-

ciated with schizophrenia. However, the complex nature of such models renders it challenging

to fit them to individual subjects’ behavioural data. At the level of neural systems, simpler bio-

logically-grounded models [17,18] have been employed to relate macrocircuit-level dysfunc-

tions to symptoms of mental health disorders, and motivate non-invasive experimental

neuroimaging to probe such dysfunctions [19]. Such (connectionist) biologically-motivated

models retain a mapping between neurobiology and behaviour, while allowing faster computa-

tion and fewer free parameters.

Here our focus is on developing similar biologically-plausible models of subjective confi-

dence and metacognition–the ability to reflect upon and evaluate aspects of our own cognition

and behaviour. Recent advances in metacognition research has led to the development of pre-

cision assays for different facets of metacognitive ability [20,21]. Within a signal detection the-

ory (SDT) framework, metacognitive bias refers to a subject’s overall (mean) confidence level

on a task. In contrast, metacognitive sensitivity refers to whether subjects’ confidence ratings

effectively distinguish between correct and incorrect decisions, as quantified by the SDT met-

ricmeta−d0. Furthermore, metacognitive sensitivity can be compared to another SDT measure,

d0, which quantifies how effectively a subject processes information related to the task [22,23].

The ratiometa−d0/d thus yields a measure of metacognitive efficiency, i.e. metacognitive sensi-

tivity for a given level of task performance [24].
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Experimental evidence suggests that these facets of metacognitive ability are dissociable

from task performance, and may have a distinct neural and computational basis [25–31].

Interestingly, self-reported mental health symptoms have been linked to changes in metacog-

nition, often in the absence of differences in task performance [32–35]. Developing a biologi-

cally-motivated model of metacognition has the potential to cast light on how this dissociable

mechanism is implemented at a circuit level, as well as provide a direct bridge between circuit-

level dysfunction and psychopathology.

Theoretical work addressing perceptual decision-making has proposed dynamical reduced

accounts [36,37] that provide detailed biophysical models of decision making [38], enabling

more rigorous theoretical analyses and faster computation. For instance, [36] have accounted

for most of the behavioural results addressed by [38] using the two slowest N-Methyl-D-aspar-

tic acid (NMDA) dynamical variables. More recently, [39] extended [36] to account for deci-

sion confidence reports and other metacognitive behaviours, such as an ability to flexibly

change one’s mind and correct errors [40]. More specifically, guided by neurophysiological

evidence that supports an encoding of confidence within higher-order prefrontal brain regions

[27,41], the authors introduced the idea of a third ‘uncertainty-monitoring’ neuronal popula-

tion (i.e. dynamical variable). This population continuously monitors uncertainty in the net-

work, interacting with the other two populations involved in decision-making via a feedback

loop mechanism [42].

A classic proposal from cognitive psychology is that changes in metacognition reflect alter-

ations in higher-order computations that serve to “monitor” first-order task performance [43].

Our primary focus here is on the question of whether developing biologically-plausible

accounts of metacognitive monitoring can shed light on the source of differences metacogni-

tive sensitivity. Other recent work has focused on simulating parallel neural populations

engaged in perceptual decision-making, finding that informing confidence with the activity of

less-normalisation-tuned neurons can account for cases in which confidence is altered in the

absence of differences in performance [44]. Our model is complementary to this endeavour,

instead focusing on the dynamics of uncertainty encoding within a dedicated, higher-order

neural population that integrates input from sensorimotor neuronal pools, and continuously

feeds this uncertainty signal back to modulate evidence integration. This feedback mechanism

adds a layer of nonlinearity, accounting for non-trivial interactions between confidence, accu-

racy and response times. We will see, though, that such a higher-order monitoring population

can also account for shifts in metacognitive bias, and therefore capture instances of perfor-

mance-confidence dissociation.

To gain insight into potential mechanisms underlying shifts in metacognition, we first dem-

onstrate that our biologically-motivated model [39,40] can account for human confidence

reports. In a novel approach, we show that the intrinsic dynamics of this model, constrained

only by first-order performance, are sufficient to account for subjects’ confidence reports,

going beyond existing methods of fitting models directly to empirical confidence data [45,46].

We then map theoretical constructs such as metacognitive sensitivity and efficiency onto our

dynamical model, demonstrating that changes in metacognitive sensitivity are associated with

isolated disturbances in a higher-order node of the network involved in uncertainty monitor-

ing. This computational approach also allowed us to relate circuit-level deficits in metacogni-

tion to psychopathology, by re-analysing an existing dataset [32]. We hope our work advances

the field by providing a computational framework for mapping theoretical metrics of metacog-

nition onto dynamical models of decision uncertainty.
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Results

Neural circuit model

Our model comprises two interacting subnetworks. The sensorimotor module comprises two

mutually-inhibiting neuronal populations selective for two decision alternatives (eg more dots

on the right or left), each of which are endowed with self-excitation [36]. Importantly, our

model builds on neurophysiological evidence suggesting that decision confidence is encoded

by higher-order brain regions [27,41]. A crucial aspect of the model is that decision uncer-

tainty (i.e. reciprocal of confidence) is continuously monitored by a dedicated neuronal popu-

lation termed the ‘uncertainty-monitoring’ population. The latter encodes uncertainty using a

leaky integrator–by integrating the summed neuronal activities of sensorimotor populations

(see Fig 1C for a sample trial). This integration is terminated when a response is made, i.e. in

effect corresponding to when neuronal activity in one of the sensorimotor populations reaches

a decision threshold (see Fig 1C and Methods). Finally, the uncertainty-monitoring population

continuously feeds back the encoded uncertainty into both sensorimotor populations via a

feedback loop (See Fig 1B, red arrows). This excitatory feedback mechanism is reminiscent of

a dynamic gain modulation (see Fig 1D), previously shown to account well for response time

patterns from decision-making experiments with urgency [47–51]. Here we refer to this feed-

back loop as the strength of uncertainty modulation (UM).

Applying the model to account for facets of metacognition

We first asked whether our model can account for variation in standard theoretical metrics of

metacognition. To do that, we simulated the model using various parameter values, and

derived both choices and confidence judgements from the fluctuations in the uncertainty-

monitoring population of the model. More specifically, for each simulated trial, we define deci-

sion uncertainty (the inverse of decision confidence) as the maximum firing rate reached by

the uncertainty-monitoring population within that trial [39]. We use equal-width binning to

bin (discretise) raw confidence measurements into confidence bins (discrete ratings).

Next, we entered the simulated confidence-accuracy matrix as data into a Bayesian model of

metacognitive sensitivity [21]. The model returns a parametermeta−d0 representing the metacog-

nitive sensitivity for a particular simulation with a set of parameter values. Metacognitive efficiency

is then estimated by comparingmeta−d0 to the model’s perceptual sensitivity (i.e, d0) yielding the

ratio meta_d’/d’ (M-Ratio [20]). Metacognitive bias is defined as the average binned confidence

level across both correct and incorrect trials. We fitted several linear models to estimate the contri-

bution of each parameter in our network model of decision confidence to perceptual sensitivity,

metacognitive bias, metacognitive sensitivity, and metacognitive efficiency (see Methods).

The results (Fig 2A and 2C) show increasing gain has a strong positive effect on d0 and

metacognitive sensitivity. The effect on d0 is unsurprising given that increasing gain magnifies

the difference in input each neuronal population is receiving (see Fig 1B). d0 here acts as a ceil-

ing for metacognitive sensitivity, hence the increase inmeta_d’ with increasing gain. Notably,

however, we also ran simulations with higher UM values, and metacognitive sensitivity wors-

ened and did not increase with increasing gain, despite the improvement in perceptual sensi-

tivity (Fig D in S5 Appendix). The results also show (Fig 2B) that increasing gain has a weak

effect on metacognitive bias (although see Fig D in S5 Appendix). Finally, the results (Fig 2D)

show that increasing gain has a moderate positive effect on metacognitive efficiency, possibly

driven by the sustained linear increase in d’ as a function of gain.

More interestingly, the second set (Fig 2, bottom row) of results show that increasing UM

has only weak effects on first-order task performance (d0) (Fig 2E). However, increasing UM
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Fig 1. Task and neural circuit model. A. Perceptual decision-making task used as a basis for simulations. A fixation

cross appears for 1000ms, followed by two boxes with dots for a fixed duration of 300ms. Subjects are asked to judge

which box contains the greater number of dots by pressing left/right key on the keyboard. Their response is

highlighted for 500ms, i.e. with a blue border appearing around the chosen box. Finally, participants report their

confidence in their decision on a scale of 1–11 in experiment 1, and 1–6 in experiment 2 (S1 and S2 Appendices). B.

Neural circuit model of decision uncertainty. The model comprises two modules. The sensorimotor module (green)

comprises two neuronal populations (blue/orange) selective for right/left information. The two populations are

endowed with mutual inhibition (lines with filled circles) and self-excitation (curved arrows). These populations

receive external input as a function of the difference between the number of dots shown in the two boxes.

Figure assumes correct response is on the right–hence the positive input bias for the population selective to rightward

information. A gain parameter controls the difference in input each population receives. One neuronal population

(red) continuously monitors overall decision uncertainty by integrating the summed output of the sensorimotor

populations (see Methods). Uncertainty is equally fed back into both neuronal populations through symmetric

feedback excitation (two-way red arrows, controlled by value of uncertainty modulation strength, UM). C. A sample

timecourse of the activities of the sensorimotor populations (top panel) and uncertainty-monitoring population

(bottom panel). Typical winner-take-all behaviour is seen in the sensorimotor module. Activity of the uncertainty-

monitoring population follows a phasic profile (see [39,40] and Methods). Trial simulated with dot difference between

the two boxes set at 20 (see Methods). D. Sample timecourse of firing rates of the ‘winning’ neural population (i.e. one

with more input bias) in the sensorimotor module under two strengths of uncertainty-modulation (UM) values.

Random seed reset to control for noise. In the case of the trial with strong (weak) excitatory feedback (solid grey
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strength has a negative effect on both metacognitive bias (Fig 2F) andmeta−d0 (Fig 2G), lead-

ing to reductions in overall confidence and metacognitive sensitivity. Given that first-order

performance is relatively unchanged, greater UM strength also results in lower metacognitive

(black) trace), ramping up is faster (slower), leading to a quicker (slower) response. Neural population firing rates

shown here are smoothed with a simple moving average (window size = 50ms).

https://doi.org/10.1371/journal.pcbi.1009201.g001

Fig 2. Dissociable changes in metacognition are associated with changes in uncertainty modulation. The behaviour of the model was analysed using standard metrics

of performance (d’) and metacognition (metacognitive bias, sensitivity (meta_d’) and efficiency (meta_d’/d’)). Blue line represents mean value of metric across 50

simulations. Shaded area is standard deviation. Yellow line is linear fit to mean value of metric as a function of parameter value. Increases in gain lead to monotonic

increases in (A) d0(β1 = 0.5, R2 = 0.99, p<0.001) and (C) metacognitive sensitivity (β1 = 28.45, R2 = 0.99, p<0.001) but (B) a small effect on bias (β1 = 23.5, R2 = 0.09,

p<0.001). Gain has a moderate positive weak negative effect on (D) metacognitive efficiency (β1 = 3.53, R2 = 0.41, p<0.001), possibly driven by the strong linear increase in

d’ in panel A. Increasing UM has no effect on (E) d0(β1 = 5.65, R2 = 0.01, p = 0.15), but a negative effect on (F) metacognitive bias (β1 = −122.83, R2 = 0.2, p<0.001), (G)

metacognitive sensitivity (β1 = −98.83, R2 = 0.5, p<0.001), and (H) metacognitive efficiency (β1 = −100.49, R2 = 0.58, p<0.001). In (I-J), we varied both parameters and

measured the effect on (I) d0 and (J) metacognitive sensitivity. The increase in d0 is mostly driven by changes in gain (I), whereas changes in metacognitive sensitivity are

mostly driven by UM (J). All simulations were done with the same fixed list of dot differences (2.8 in log-space). In simulations (A-H), where the gain (UM) parameter is

varied, UM (gain) was fixed at 0.0009 (0.0029). R2 in all panels is adjusted R2. Confidence data was generated by binning the uncertainty values into 6 bins, assuming equal

bin width (see Methods). See Fig D in S5 Appendix for additional simulations with different parameter values. See also S5 Appendix for results that highlight dissociable

changes in metacognitive bias as a result of varying UM.

https://doi.org/10.1371/journal.pcbi.1009201.g002
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efficiency (Fig 2H). We then varied both parameters together and confirmed that changes in

first-order task performance (d0) (Fig 2I) are driven by changes in gain, whereas changes in

metacognitive sensitivity (meta−d0) (Fig 2J) are driven by changes in UM.

The bottom row of Fig 2 suggests a linear fit is not sufficient to account for the relationship

between UM and d’, meta bias,meta_d’, andmeta_d’/d’. More specifically, despite d’ remain-

ing mostly constant (~1–1.1) in the majority of the explored UM parameter space (Fig 2E), Fig

2F shows that when UM is between 0.001 and 0.0015, d’ increases when increasing UM. Fur-

thermore, Fig 2F–2H show some inflection points where the behaviour before and after these

points is different. For instance–meta bias peaks when UM = 0.0015, whereasmeta_d’ and

meta_d’/d’ peak at UM = 0.005. The existence of nonlinear relationships between UM and our

theoretical measures of metacognition is perhaps not surprising given that the value of UM

governs how two highly non-linear subnetworks of our model interact to generate decision

performance and confidence (via increasing/decreasing excitatory feedback).

We note that the model’s uncertainty does not in itself discriminate between correct and

incorrect responses. In the model, such differences in confidence naturally emerge through

the differences in response times for correct/incorrect trials as a function of difficulty. More

specifically, giving the uncertainty-monitoring population more time to integrate input natu-

rally leads to higher uncertainty (less confidence), which in turn is more likely to occur both

during incorrect trials and on more difficult problems.

Overall, the results suggest that, in our model, a dissociable uncertainty-monitoring mecha-

nism can drive changes in metacognition, in the absence of any change in task performance.

More specifically, stronger uncertainty modulation is associated with a decrease in metacogni-

tive sensitivity, bias, and efficiency, but not perceptual sensitivity. Armed with this under-

standing of how model parameters relate to facets of metacognitive performance, we next fit

the model to subjects’ data, and apply a computational psychiatry approach in order to relate

variation in model parameters to psychopathology.

Model fits to subject data

We re-analysed data from [32], in which subjects (experiment 1: 498 subjects, experiment 2:

497 subjects) completed an online task via Amazon Mechanical Turk. In the task, upon initiat-

ing a trial, a fixation cross appears for 1000ms, followed by two black boxes each filled with a

number of white dots (see Fig 1A). Subjects indicated first which box contains the greater

number of dots, by pressing the right or left arrow key on a computer keyboard, and then

provided their confidence rating on a numerical scale (1–11 for experiment 1, 1–6 for experi-

ment 2).

To provide insight into the interaction between decision formation and metacognitive pro-

cesses in this task, we simulated and fitted our neural circuit model of decision uncertainty to

subjects’ choices and response times [39,40]. This allowed us to use subjects’ explicit confi-

dence reports as an out-of-sample test of the model’s ability to account for individual differ-

ences in metacognition. For simplicity, we only simulated the sensorimotor and uncertainty

modules of the circuit, as originally introduced in [39,40] (See Fig 1B).

In fitting our model to subjects’ choices and response times, we used a procedure based on

the subplex optimisation method [52,53] (see Methods). The subplex optimisation method is

an evolution of the simplex method [54]–one that is better suited for optimising noisy objec-

tive functions. Importantly, when parameterising our model, we initially set the values of all

parameters to those found in our previous work [40], allowing only two parameters to vary in

the fitting procedure. The first parameter is a ‘gain’ parameter, which maps the dot difference

to input current flowing into the sensorimotor populations (see Methods). Subjects having
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larger values for the gain parameter generally have better choice accuracy, i.e., at the circuit

level, a larger gain value implies a larger bias in sensory input to the sensorimotor population

corresponding to the correct choice. The second parameter is the strength of uncertainty mod-

ulation (see Fig 1D for an example of effect of varying this parameter on the decision process).

In experiment 1, subjects completed a perceptual decision-making task in which they

judged which box contained a greater number of dots, followed by a confidence report on an

11-point numerical scale. Subjects then completed a number of questionnaires to assess self-

reported psychiatric symptoms (see Methods). Unsurprisingly, subjects were more accurate

when the task was easy, i.e. when the difference between the number of dots was large (see Fig

3A). The model captures this straightforward relationship between accuracy and task difficulty

(Fig 3A), and accounts for individual variation in accuracy levels (Fig 3C).

In line with existing findings from both human and animal studies of decision-making

[46,55,56], subjects’ correct (error) responses were quicker (slower) as the task became easier,

Fig 3. Model accounts for subjects’ perceptual performance in experiment 1. A. Choice accuracy, i.e. probability correct as a function of task difficulty

from experiment 1 of [32] averaged across all 498 participants. Task difficulty is split into 5 difficulty bins (1: most difficult, 5: easiest) as in the original

paper (see Methods). Grey markers: data. Black markers: model fits. B. Response times as a function of task difficulty from the data (circles) and model

fits (diamonds) averaged across all participants. Orange (blue) markers: Error (correct) responses. The typical ‘<‘ pattern, i.e. response times for correct

(error) responses increasing (decreasing) as a function of task difficulty, is found in both the model and data. C. Scatter plot of observed (empirical) vs.

simulated overall accuracy and D. response times for each of the 498 subjects. Error bars indicate 95% confidence interval. Random seed is reset after each

simulation during the fitting procedure and for the purposes of generating panels C and D (but not A and B). See Fig C in S5 Appendix for scatter plots

without resetting the random generator seed.

https://doi.org/10.1371/journal.pcbi.1009201.g003
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forming a ‘<‘ pattern of response times as a function of difficulty (see Fig 3B and 3D for indi-

vidual variation in mean response time). Observing an interaction between difficulty and accu-

racy in response time data is particularly striking given that the task was administered using a

web-based platform, where response time measurement might be expected to be noisier than

in standard laboratory settings. However, such a pattern was closely mirrored by our model

fits, and importantly allowed us to constrain the model’s estimates of subjects’ confidence (see

below).

Neuronal model constrained with perceptual performance accounts for

subjects’ confidence reports

We next asked whether our fitted model parameters could account for subjects’ explicit confi-

dence reports, even though these data had not been used to constrain the model. Here, we

leverage the close relationship between confidence, response time and task difficulty to make

inferences about trial-by-trial uncertainty (or confidence) levels from model fits to first-order

performance [41,57]. In our model, longer response times allow more time for the uncertainty

monitoring population to activate—leading to higher uncertainty (see Methods).

We first simulated our neural circuit model with the parameters fitted to subjects’ choices

and response times from experiment 1. We then applied distribution matching [46] to map

the model’s simulated uncertainty levels onto subjects’ retrospective confidence reports. More

specifically, instead of equal-width binning used in our analyses thus far, the shape of the over-

all mapping (i.e. prior to conditioning on performance or difficulty) is inferred from the distri-

bution of experimental confidence reports, per subject (see Methods). This allowed us to show

the model accounts for the complex relationship between decision confidence and task diffi-

culty (see Fig 4A). The results also hold after conditioning confidence reports on trial outcome

(i.e. correct vs. error). Importantly, these effects result from the intrinsic nonlinear dynamics

of the network after fitting to (and constraining the model with) subjects’ first-order perfor-

mance data alone. The empirical confidence data are only used to set confidence thresholds,

prior to conditioning on stimulus difficulty and accuracy. Hence the model is able to account

for individual differences in subjects’ perceptual and metacognitive performance despite

model fits only having access to choices, response times and the overall distribution of confi-

dence ratings. We next asked whether the parameters of in the model might also covary with

psychiatric symptom scores.

Psychiatric symptoms are associated with the strength of uncertainty-

monitoring

In experiment 1, upon completion of the main perceptual task, participants completed a series

of standard self-report questionnaires that assess a range of psychiatric symptoms [58–67].

The questionnaires comprised: Zung Self-Rating Depression Scale, Generalized Anxiety Disor-

der 7-item scale, Short Scales for Measuring Schizotypy, Barratt Impulsiveness Scale 11, Obses-

sive-Compulsive Inventory-Revised [OCI-R], and Liebowitz Social Anxiety Scale.

As in [32], we ran a series of linear regressions to tease apart the relationship between psy-

chiatric symptoms and model parameters. Importantly, here, we were able to account for dif-

ferences in perceptual and metacognitive performance using only two model parameters, as

highlighted in our model fits above. The first parameter (UM) controls the strength of uncer-

tainty modulation. The second (gain) parameter maps the dot difference subjects see on the

screen to difference in input current flowing into the model’s sensorimotor neuronal

populations.
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We entered each questionnaire score (see Methods) into multiple linear regressions pre-

dicting the uncertainty modulation and gain parameters. The results (see Fig 4B) show that

increases in z-scored self-reported scores were broadly associated with weaker uncertainty

modulation across all dimensions of psychopathology, with the exception of impulsivity,

though the association strengths did not differ between questionnaires. This contrasts with the

gain parameter, which did not correlate with any of the self-reported scores (p>0.05) in exper-

iment 1. These results largely recapitulate the relationships between empirical confidence level

and psychiatric symptoms scores (albeit with minor differences in effect sizes) observed in

[32], but now provide a potential circuit-level explanation for such differences (i.e., a change

in the strength of uncertainty modulation).

We also followed the same approach for experiment 2 (see S2 Appendix), although here we

found no significant association between the majority of self-reported scores (or cross-cutting

factors derived from these scores, see Fig A in S2 Appendix) and model parameters. This lack

of significance in experiment 2 may reflect the smaller variance in difficulty (due to the stair-

case procedure) leading to inferences on uncertainty modulation being less constrained by the

data (see Fig C in S2 Appendix). To explore this further, we attempted to recover the parame-

ters fitted to both experiment 1 and 2 data and found that the fits to experiment 1 data were

indeed more stable–potentially due to the larger variation in task difficulty. We note however

that qualitatively, similar symptom scores (e.g. depression, anxiety) that were negatively related

to uncertainty modulation in experiment 1 were also negatively related to the uncertainty

modulation in experiment 2. In addition, when using the HMeta-d toolbox [21] to perform a

hierarchical regression [68], we obtained a positive association between the strength of

Fig 4. Model accounts for subjects’ confidence reports and individual differences in uncertainty modulation predict symptom scores. A. Confidence reports

averaged across all participants from experiment 1 data (circles) and model (diamond) as a function of task difficulty. Orange (blue) markers: Error (correct) responses.

Note that the model was fit only to first-order performance data (accuracy and response times) and fits to confidence represent an out-of-sample prediction. Confidence

increases (decreases) as a function of changing task difficulty for correct (error) responses. B. Symptom scores from experiment 1 were entered into a multiple regression

model predicting the strength of uncertainty modulation and gain parameters from the model fits to task performance (choices and response times). Self-report measures

of depression (grey), schizotopy (blue), social anxiety (red), obsessive and compulsive symptoms (purple) and generalised anxiety (green) are significantly associated with

weaker uncertainty modulation. No significant association was found between impulsivity (pink) and the strength of uncertainty modulation. No significant association

was found between the symptom scores and the gain parameter. See Methods for details on the regression models. Error bars indicate s.e.m. All regression results shown

control for the influence of age, gender, and IQ (see Fig B in S5 Appendix for regression model results with age and IQ predicting model parameters). � p<0.05.

https://doi.org/10.1371/journal.pcbi.1009201.g004
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uncertainty modulation and metacognitive efficiency in experiment 2 (mean value of μβ =

0.0516, 95% highest density interval = (0.0813, 0.0016), see Fig A in S5 Appendix).

Discussion

While self-reported psychiatric symptoms have been shown to be associated with dissociable

differences in metacognition, the mechanisms underlying such changes have remained elusive.

In this work, using a computational circuit model of decision-making, we show that shifts in

metacognition are associated with disturbances in the interaction between decision-making

and uncertainty-monitoring networks. Specifically, uncertainty modulation is associated with

metacognitive bias, sensitivity, and efficiency. Importantly, changes in uncertainty modulation

strength have no effect on perceptual sensitivity. Notably, our model-fitting approach enabled

inferences about uncertainty modulation (and, in turn, these facets of metacognition) from fits

to first-order performance data alone. The empirical confidence distributions were used to set

confidence thresholds alone (via distribution matching), thus influencing the overall mean

and shape of the modelled confidence distribution, but not the relation between confidence

and features of performance, response time or task difficulty. Nevertheless, the model is able to

account for individual differences in subjects’ perceptual and metacognitive performance

despite model parameters being adjusted solely on the basis of patterns of choices and response

times. When we apply this approach to data from an online perceptual decision task, we find

that self-reported psychiatric symptoms are associated with disturbances in uncertainty

modulation.

Through a dedicated uncertainty-monitoring population, our model of decision uncer-

tainty captures key features of the neurobiology of metacognition, while remaining sufficiently

simple to fit to data. Recent work has shown that long response times are associated with lower

confidence for an impending decision [40,41,57]. Our computational model naturally

accounts for this phenomenon. More specifically, winner-take all behaviour is less prevalent

when the external stimulus input to the network is (or close to) symmetric, i.e. when stimulus

information is ambiguous. This high level of competition between the sensorimotor popula-

tions prolongs the time taken to reach a decision threshold, and by allowing more time for an

uncertainty-monitoring module to integrate bottom-up input results in higher uncertainty.

Building on this proposed mechanism, and existing behavioural evidence, our approach allows

us to infer metacognitive performance from first-order (i.e. response time) data.

Crucially, we go beyond simply relating our model dynamics to decision confidence [39].

By analysing our model’s uncertainty estimates using standard metrics of metacognition, we

reveal that changes in uncertainty modulation in such a network has effects on metacognitive

bias, sensitivity, and efficiency, while leaving perceptual sensitivity unaffected. In simulation,

there were nonlinear relationships between UM and meta-d, with both increases and decreases

affecting metacognitive bias and sensitivity. In contrast, in fits to empirical data, decreases in

UM were generally associated with greater psychopathology and lower metacognitive sensitiv-

ity. It is of interest to note here that such dissociable changes in metacognitive ability, as a

result of a (higher-order) disturbance in the strength of uncertainty modulation, finds support

in recent neuropsychological work. For instance, lesions in prefrontal brain regions are associ-

ated with deficits in metacognitive ability, but not task performance [28,29,31], highlighting

the contribution of higher-order brain regions to metacognition [26,27]. Future work could

combine our computational framework with neuroimaging to further elucidate the neural

basis of metacognitive ability.

Our model architecture complements work exploring how parallel sensorimotor neural

populations, with different normalisation tuning, may account for cases where confidence is
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altered in the absence of a performance change [44]. We anticipate that a full circuit model of

metacognition will need to combine aspects of parallel evidence accumulation (simulating e.g.

parietal cortex neural populations) and higher-order monitoring (simulating e.g. prefrontal

neural populations involved in the representation and use of uncertainty [30]). Of particular

note here is that we show changes in metacognitive bias may also occur due to shifts in param-

eters governing higher-order nodes of the circuit. It seems plausible that different forms of

confidence bias could map onto different levels of the system. For instance, confidence shifts

induced by changes in volatility or amount of evidence may be explained by preferential acti-

vation of less-normalisation-tuned populations [44], whereas confidence biases related to

mood or more “global” aspects of performance may be explained by changes in higher-order

nodes of the system [69].

Adopting a computational psychiatry approach, we shed light on a potential driver of meta-

cognitive distortions reported in recent work in relation to mental health symptoms [32]. Rou-

ault and colleagues [32] showed that symptom scores for depression, social anxiety, and

generalised anxiety relate to lower confidence level. In the present report, following similar

analyses, we show that these relationships can be explained by changes in the strength of

uncertainty modulation, in the absence of any change in sensory gain. Our analyses not only

recapitulate previously-reported relationships with depression and anxiety (Fig 5), but show

that schizotopy and OCD scores also relate to disturbances in uncertainty modulation [70], in

line with existing work relating deficits in self-evaluation to schizophrenia [71].

In Fig 5, we compare symptom scores predicting UM (on the left in Fig 5 below), symptom

scores predicting empirical mean confidence (Fig 5, middle), and symptom scores predicting

metacognitive sensitivity (Fig 5, right). Fig 5 shows that the standardised effect sizes are slightly

Fig 5. UM parameter offers an implicit, low-dimensional marker of metacognitive (dys)function. Symptom scores

from experiment 1 were entered into a multiple regression model predicting the strength of uncertainty modulation,

empirical mean confidence, and metacognitive sensitivity. Self-report measures of depression (grey), schizotopy (blue),

social anxiety (red), obsessive and compulsive symptoms (purple) and generalised anxiety (green) are significantly

associated with weaker uncertainty modulation. Depression, social anxiety, and generalised anxiety are associated with

lower mean confidence. Depression and generalised anxiety are associated with decreased metacognitive sensitivity. �

p<0.05.

https://doi.org/10.1371/journal.pcbi.1009201.g005
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larger in the case of Depression (β = -0.128, p<0.05), Social Anxiety (β = -0.136, p<0.05), and

Generalised Anxiety (β = -0.141, p<0.05) predicting mean confidence, compared to predicting

UM (β = -0.115, p<0.05 in the case of Depression, β = -0.089, p<0.05 in the case of Social Anx-

iety, and β = -0.087, p<0.05 in the case of Generalised Anxiety). The difference is smaller

when comparing the standardised effect sizes in the case of symptom scores predicting UM vs.

metacognitive sensitivity (β = -0.102, p<0.05 in the case of Depression, and β = -0.091, p<0.05

in the case of Generalised Anxiety). Overall, the results suggest that the UM parameter offers

an implicit, low-dimensional marker of metacognitive (dys)function, but that confidence rat-

ing data would still give a richer perspective and provide distinct measures of sensitivity and

bias (as shown in our Fig A in S2 Appendix).

Recent work has demonstrated that symptoms of OCD are associated with deficits in utilis-

ing evidence to update confidence [35]. In the context of our model, this can be explained by

the weaker UM strength associated with Obsessive-Compulsive Inventory–Revised (OCIR)

scores—i.e. participants with higher OCIR scores tend to monitor uncertainty for longer, pro-

longing their response times, but not necessarily increasing their confidence in their decisions.

Such a mechanism is supported by recent work linking extended evidence accumulation asso-

ciated with compulsive behaviour to increased decision-making thresholds and metacognitive

impairments [72,73]. Notably, in the current work, we could account for individual differences

in task (Figs 3 and 4) and metacognitive performance (Fig 4A) even in large samples of data

(N = 495 in Experiment 1, N = 496 in Experiment 2 –see S1 and S2 Appendices for Experiment

2 results) collected over the web where experimental control over subjects’ responses is less

precise, and response time measurement potentially noisier. Taken together, the results from

both experiments suggest our computational framework can be used to study the interaction

between metacognition and psychiatric symptoms without requiring subjects to explicitly

report confidence in decisions—potentially opening the door to using shorter, more engaging

tasks such as smartphone games [74].

We also explored whether our model accounts for metacognition-psychopathology rela-

tionships in a task with staircased difficulty levels (experiment 2 in [32]). Although our analy-

ses of the UM parameter show a similar pattern to those obtained for metacognitive bias in the

original study (Fig A in S2 Appendix), these relationships between factor scores and model

parameters did not reach significance. One interpretation of this equivocal result is that effec-

tive inference on individual differences in uncertainty modulation strength may require per-

ceptual tasks with systematic variation in difficulty, to enable full coverage of the RT-accuracy-

difficulty surface (i.e. the < patterns). Importantly, we found that the fit for experiment 2 is

not as stable as the fit for experiment 1 (Figs B and C in S2 Appendix). Further theoretical

work is needed to determine the effect of per-subject difficulty variance on the ability to infer

such model parameters.

There are notable limitations to the scope of the model that deserve further investigation in

future work. First, it is worth noting that our previous work [39] showed that our model may

produce uncertainty and response time patterns that do not strictly follow the ‘<‘ pattern, e.g.

with less pronounced increase (decrease) in response times (confidence) for incorrect trials.

Such patterns have been previously reported in empirical data [57,75–77] when considering a

wider range of task types (e.g. free-response tasks), and stimulus durations. Second, in our

model, there exists a high positive correlation between the maximum firing rate achieved dur-

ing the trial for both the losing sensorimotor population and the model’s uncertainty monitor-

ing population. This mechanism may limit the model’s ability to account for settings where

high (low) confidence is associated with slow (fast) response times. Future modelling work can

investigate fitting the model to data from such settings. Finally, previous work [45] has shown

that slower response times can be associated with higher confidence when subjects optimise
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for accuracy over speed. In our model, both the non-selective top-down excitation of the sen-

sorimotor populations and the decision time (which determines the integration window of the

uncertainty-monitoring population) contribute to a high positive correlation between uncer-

tainty and response time. Accounting for a reversal in this relationship is beyond the scope of

the current modelling work. In order to account for various speed/accuracy trade-offs leading

to differential confidence-reponse time correlations, future work will need to investigate alter-

native model architectures where the integration-time window is fixed across trials, and is not

decision-time dependent.

Previous versions of our neural circuit model have also been applied to tasks with explicit

motor reaching trajectories through a dedicated motor output network [39,40]. Here, given

that participants reported their decisions using a keyboard button press rather than continu-

ous motor responses, this aspect of the network was less relevant. However, our current find-

ings highlight the promise of leveraging the full model to dissect the interaction between

uncertainty-monitoring, indecisiveness and psychiatric symptoms in a task where both sen-

sory input and motor output are quantified in a continuous, dynamic fashion. Because these

relationships can be obtained from fits to first-order performance and response time data

alone, future work could leverage our computational framework to infer facets of metacogni-

tion in situations where obtaining explicit metacognitive judgements is problematic or impos-

sible, e.g. in studies of animals or children.

In summary, we employed a biologically-plausible model of decision uncertainty to relate

dissociable shifts in metacognition to isolated disturbances in uncertainty modulation. We vali-

date our model against empirical data, and relate its parameters to psychopathology. Our work

bridges a gap between a biologically plausible model of confidence formation and the observed

disturbances in metacognition seen in mental health disorders, and provides a first step towards

mapping theoretical constructs of metacognition onto dynamical models of decision uncer-

tainty. In doing so, we provide a computational framework for modelling metacognitive perfor-

mance in settings where access to explicit confidence reports is either difficult or impossible.

Methods

Ethics statement

Data analysed in this work was first collected as part of a study conducted by [32]. Participants

provided written consent in accordance with procedures approved by the University College

London Research Ethics Committee (Project ID 1260/003).

Neural circuit model of uncertainty

We modelled the processes underpinning decisions and confidence using a neural circuit

model of uncertainty described previously [39,40]. The version of the model used here com-

prises two interacting subnetworks—a decision-making sensorimotor module, and an uncer-
tainty-monitoring population.

As in previous work [39,40], the sensorimotor module is modelled using a reduced (i.e.

two-variable) spiking neural network model [36,38]. The dynamics of the neuronal popula-

tions are described by:

dSL
dt
¼ �

SL
ts
þ 1 � SLð ÞgH xL; xRð Þ ð1Þ

dSR
dt
¼ �

SR
ts
þ 1 � SRð ÞgH xR; xLð Þ ð2Þ
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where SL and SR are the synaptic gating variables for the sensorimotor population selective to

leftward and rightward stimulus information, respectively. τs denotes the synaptic gating time

constant. γ is a constant that is derived in previous theoretical work [36] that describes a reduc-

tion of the original spiking neuronal network model of decision making [38].

The firing rate of a sensorimotor population can be described using the nonlinear function

H:

Hi ¼
axi � b

1 � e� dðaxi � bÞ
ð3Þ

where a, b, d are parameters fitted to the leaky integrate-and-fire model [38]. The variable i
can be L or R, denoting sensorimotor population selective for rightward or leftward sensory

information, respectively. xi denotes the total input into population i, and can be described by:

xi ¼ wþSi � w� Sj þ Ic þ Ii þ Is þ wuU ð4Þ

where w+ denotes synaptic weight for self-excitation, whereas w− denotes synaptic weight for

mutual inhibition. Ic is some constant input. Iσ denotes noise—here we use the same noise

described by an Ornstein–-Uhlenbeck process as in [36]. Ii denotes external input flowing into

population i, as a function of the dot difference participants see on the screen (Fig 1). This

external input is described by:

Ii ¼ wem0ð1� εÞ ð5Þ

where we is a synaptic weight, whereas μ0 is some baseline external input. ε can be described

by:

ε ¼ gain � dot difference ð6Þ

where the input gain parameter maps the dot difference to difference in input flowing into

the sensorimotor populations. In our model, sensorimotor populations continue to integrate

evidence for 180ms after the initial decision is made (nondecision time). This nondecision

time has been used in previous work to account for signal transduction delays [78,79].

Our model does not account for more extended post-decisional processing, or the incorpo-

ration of new, post-decisional evidence. Such additions to the model may usefully augment the

extent to which we are able to accommodate dissociations between confidence and

performance.

Importantly, the last term in Eq (4) (wuU) determines the strength of feedback excitation

from the uncertainty-monitoring neuronal population. More specifically, wu is referred to

throughout this article as UM, or uncertainty modulation strength. U denotes the dynamical

variable of the uncertainty-monitoring population, which is described by:

tu
dU
dt
¼ ½HL þHR � l�þ � U ð7Þ

where []+ is a threshold linear function (threshold = 0).HL and HR are functions denoting fir-

ing rates for sensorimotor populations selective for leftward and rightward stimulus informa-

tion, respectively (from Eqs (1) and (2)). l denotes some constant input that suppresses the

firing of the uncertainty-monitoring population. This input is de-activated 200ms after stimu-

lus onset, and is reactivated when one the firing rate of the sensorimotor populations reaches a

decision threshold (see Fig 1). Eq (7) includes a leak term (−U), hence why the integration

decays over time when no external input is present (i.e., a leaky integrator). We summarise the

values of all model parameters in Table 1.
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Quantifying uncertainty within a trial

As in our previous work [40], for a given trial, we used the maximum firing rate value of the

uncertainty-monitoring neuronal population as a decision uncertainty measurement for that

particular trial (the inverse of decision confidence). When extrapolating confidence reports

from simulations (e.g. for Fig 2 simulations), we used simple equal-width binning in 6 bins to

relate continuous uncertainty measurements to a 6-point confidence scale, similar to the one

used in experiment 2.

Each participant uses the confidence scale differently, e.g. on a 6-point probabilistic scale,

one might consistently pick 5 as their highest confidence level. In order to relate simulated

uncertainty to empirical confidence data from each participant, we match the distribution of

simulated uncertainty to the marginal distribution of empirical confidence reports (i.e. prior

to conditioning on accuracy, response times, or difficulty [46]). More specifically, per subject,

we (non-parametrically) infer the shape of the mapping from their experimental confidence

distribution. First, we compute the cumulative distribution function (CDF) of their full confi-

dence distribution. Then, we use this CDF to derive binning width thresholds. The thresholds

here represent the quantiles of the subjects’ simulated confidence for the probabilities repre-

sented by CDF computed from experimental confidence distribution.

Model fitting procedure

To fit our model to participants’ first order performance, we used a procedure that exploits the

subplex optimisation method [52,53]. Subplex optimisation is based on the simplex optimsa-

tion method, but adapted for noisy objective functions [53]. For each participant, we minimise

the cost function:

cost ¼
1

m
ðRTmodel � RTdataÞ

2
þ

1

n
accuracymodel � accuracydataÞ

2
ð8Þ

�

where RTmodel is the model’s mean response time from a single model simulation (with a fixed

random seed), RTdata denotes the participants’ mean response time. Similarly, accuracymodel

and accuracydata denote overall accuracy for the model and experiment, respectively.m and n
are normalisation terms for response times and accuracy, respectively. Here,m and n are set to

the model statistic (i.e.,m = RTmodel, and n = accuracymodel) [52]. The cost function can be cal-

culated per difficulty level (see [80]). Here, we opted for calculating the cost using the overall

accuracy and overall response times (across all difficulties). Importantly, we only fit two free

parameters: gain and wu, from Eqs (6) and (4), respectively. The vast majority of the other

Table 1. Table of fixed model parameter values for all participants. Parameters τS, τu, a, b, d, Ic, we were directly

adapted from [40]. Parameters μ0, w+, Sth were manually tuned to adapt the model simulations to the task and stimuli.

Parameter Description Value

τS Synaptic gating time constant 100ms

τu Uncertainty population time constant 150 ms

a Input-output function parameter 270 (V nC)-1

b Input-output function parameter 108 Hz

d Input-output function parameter 0.154 s

Ic External tonic input 0.3255 nA

w+ Self-excitation strength 0.261 nA

w− Inhibition strength 0.0497 nA

μ0 Baseline stimulus input 26.49 Hz

we External input synaptic strength 0.00052 nA Hz-1

https://doi.org/10.1371/journal.pcbi.1009201.t001
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model parameters are adapted from our previous work [40] (see Table 1). When generating

synthetic data using the model (for fitting or otherwise), for experiment 1, we simulate 210 tri-

als while generating dot difference data from a uniform distribution bounded by the max and

min value for each difficulty block as found in the data. For experiment 2, we simulate the

model with the vector of dot differences experienced by each participant.

Participants

We re-analysed data from [32], and the reader is referred to this paper for a full description of

the task and sample. All participants were recruited over the web using Amazon Mechanical

Turk. In experiment 1, 663 (498 after exclusions) participants completed the task, and were

18–75 years of age. In experiment 2, 637 (497 after exclusions) participants completed the task,

and were 18–70 years of age. The study protocol was approved by the University College Lon-

don Research Ethics Committee (REF 1260/003) and all participants provided informed con-

sent before undertaking the task. All participants in experiment 1 and 2 were compensated $4.

A $2 bonus was paid out to participants on two conditions: In experiment 1, the bonus was

paid if participants achieved>50% accuracy in task performance, and passed a check question.

In experiment 2, the bonus was paid if participants achieved task performance between 60–

85%, and passed a check question. We used the same exclusion criteria applied in [32] and

described in the Supplementary Material of that paper.

Task

In both experiments, participants completed a simple perceptual decision-making task where

they judged (using a keyboard press) which box contained a higher number of dots, with no

feedback. One box was always half-filled (313 dots out of 625 positions), while the other

box contained an increment of +1 to +70 dots compared to the standard. In any given trial, a

fixation cross first appeared for 1 second, followed by two black boxes with two different

amounts of dots (for 300ms). The position of the box with higher number of dots (i.e. target

box) was pseudo-randomised. After indicating the position of the target box (left/right) via a

keyboard arrow button press, the box was highlighted for 500ms. In experiment 1, participants

completed 210 trials, split over 5 blocks, where the difficulty was varied. The position of the

target box was pseudo-randomised across all trials and within each of 5 difficulty bins.

After every trial, participants provided a confidence judgement on a full 11-point probabi-

listic scale: 1 = certainly wrong, 3 = probably wrong, 5 = maybe wrong, 7 = maybe correct,

9 = probably correct, 11 = certainly correct. Finally, pre- and post-task global confidence rat-

ings were given by participants, together with their estimates of expected maximum and mini-

mum levels of task performance.

Prior to undertaking the experiment, participants were required to select on an 11-point

scale their global expected performance level in the task relative to others, together with a max-

imum and minimum expected performance level. After completing the task, participants were

again asked to rate their expected performance level in the task relative to others, using the

same scale. Pre- and post- global confidence levels were not analysed here.

Experiment 2 (see S1 Appendix) is identical to experiment 1 in all but three aspects. First,

[32] used a staircase (calibration) procedure to fix participants’ perceptual performance

[26,81]. The staircase procedure was two-down one-up, with equal step sizes. Step-sizes (in

logspace) were: 0.4 for first 5 trials, 0.2 for next 5, 0.1 for the rest of the task. The starting point

was 4.2. Each participant completed 25 practice trials at the beginning of the task to minimise

the burn-in period. Second, participants reported their confidence on a 6-point confidence
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scale which ranged from 1 = guessing to 6 = certainly correct). Third, pre- and post-task global

confidence ratings were omitted from experiment 2.

The entire experiment was coded in JavaScript with JsPsych version 4.3 [82].

Psychiatric questionnaires

Participants completed a set of self-report questionnaires used to assess their psychiatric symp-

toms [32]. In experiment 1, the questionnaires were:

• Depression using the Self-Rating Depression Scale (SDS) [58]

• Generalised anxiety using the Generalised Anxiety Disorder 7-Item Scale (GAD-7) [59]

• Schizotypy using the Short Scales for Measuring Schizotypy (SSMS) [60]

• Impulsivity using the Barratt Impulsiveness Scale (BIS-11) [61]

• Obsessive Compulsive Disorder (OCD) using the Obsessive-Compulsive Inventory–Revised

(OCI-R) [62]

• Social anxiety using the Liebowitz Social Anxiety Scale (LSAS) [63]

In experiment 2 (S1 and S2 Appendices), the following changes were made to the set of

questionnaires:

• Generalised Anxiety questionnaire was replaced by the State Trait Anxiety Inventory (STAI)

Form Y-2 [64]

• Alcoholism was assessed with the Alcohol Use Disorders Identification Test (AUDIT) [65]

• Apathy was assessed with the Apathy Evaluation Scale (AES) [66]

• Eating disorders was assessed with the Eating Attitudes Test (EAT-26) [67]

These changes in experiment 2 were made to facilitate identification of three latent factors

that accounted for the majority of covariance across individual questionnaire items [83].

Factor analysis

For experiment 2 data (see S1 and S2 Appendices), we obtained three latent factors that explain

the shared variance across the 209 questionnaire items. To do that, we followed the same approach

in [32,83], and used the fa() function from the Psych package in R. The three latent factors were

Anxious-Depression, Compulsive Behaviour and Intrusive Thought, and Social Withdrawal.

Linear regressions

To estimate the relationship between the neural model parameters and self-reported psychiat-

ric scores, we followed the same approach as in [32]. All regressors were z-scored to ensure

comparability of regression coefficients. For each symptom score, and controlling for age, IQ

and gender the regressions were:

Param ¼ b0 þ b1Scoreþ b2Ageþ b3Genderþ b4IQ ð9Þ

To assess the relationship between model parameters and the latent factor scores (see

above), the regression was:

Param ¼ b0 þ b1Factor 1þ b2Factor 2þ b3Factor 3þ b4Ageþ b5Genderþ b6IQ ð10Þ
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Finally, we used linear regressions to estimate the contribution of two of the model parame-

ters to standard metrics of metacognition and perceptual sensitivity. Here, we did not z-score

the regressors as the goal was to visualise the relationship rather than quantitatively compare

coefficients. The regressions were:

metric ¼ b0 þ b1model param ð11Þ

Metacognitive bias, sensitivity, and efficiency

Metacognitive bias was computed as the mean confidence level across both correct and incor-

rect trials. To estimate metacognitive sensitivity, we entered simulated confidence reports as

data in a Bayesian model of metacognitive efficiency, HMeta-d [21]. The model returns a value

of metacognitive sensitivity (meta−d0) for each simulated dataset. To compute metacognitive

efficiency, we calculated the ratiometa−d0/d0.
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39. Atiya NAA, Rañó I, Prasad G, Wong-Lin K. A neural circuit model of decision uncertainty and change-

of-mind. Nat Commun. 2019; 10(1):2287–. https://doi.org/10.1038/s41467-019-10316-8 PMID:

31123260.

40. Atiya NAA, Zgonnikov A, O’Hora D, Schoemann M, Scherbaum S, Wong-Lin K. Changes-of-mind in the

absence of new post-decision evidence. PLoS Comput Biol. 2020; 16(2):e1007149–e. https://doi.org/

10.1371/journal.pcbi.1007149 PMID: 32012147.

41. Kepecs A, Uchida N, Zariwala HA, Mainen ZF. Neural correlates, computation and behavioural impact

of decision confidence. Nature. 2008; 455(7210):227–31. https://doi.org/10.1038/nature07200 PMID:

18690210

42. Yeung N, Botvinick MM, Cohen JD. The Neural Basis of Error Detection: Conflict Monitoring and the

Error-Related Negativity. Psychological Review. 2004; 111(4):931–59. https://doi.org/10.1037/0033-

295x.111.4.939 PMID: 15482068

43. Nelson TO, Narens L. Why investigate metacognition. Metacognition: Knowing about knowing. 1994;

13:1–25.

44. Maniscalco B, Odegaard B, Grimaldi P, Cho SH, Basso MA, Lau H, et al. Tuned inhibition in perceptual

decision-making circuits can explain seemingly suboptimal confidence behavior. PLoS Comput Biol.

2021; 17(3):e1008779–e. https://doi.org/10.1371/journal.pcbi.1008779 PMID: 33780449.

45. Pleskac TJ, Busemeyer JR. Two-stage dynamic signal detection: A theory of choice, decision time, and

confidence. Psychological Review. 2010; 117(3):864–901. https://doi.org/10.1037/a0019737 PMID:

20658856

46. Sanders JI, Hangya B, Kepecs A. Signatures of a Statistical Computation in the Human Sense of Confi-

dence. Neuron. 2016; 90(3):499–506. https://doi.org/10.1016/j.neuron.2016.03.025 PMID: 27151640.

47. Niyogi RK, Wong-Lin K. Dynamic excitatory and inhibitory gain modulation can produce flexible, robust

and optimal decision-making. PLoS Comput Biol. 2013; 9(6):e1003099–e. Epub 2013/06/27. https://

doi.org/10.1371/journal.pcbi.1003099 PMID: 23825935.

48. Smith PL, Ratcliff R, Wolfgang BJ. Attention orienting and the time course of perceptual decisions:

response time distributions with masked and unmasked displays. Vision Research. 2004; 44(12):1297–

320. https://doi.org/10.1016/j.visres.2004.01.002 PMID: 15066392

49. Ditterich J. Evidence for time-variant decision making. European Journal of Neuroscience. 2006; 24

(12):3628–41. https://doi.org/10.1111/j.1460-9568.2006.05221.x PMID: 17229111

50. Churchland AK, Kiani R, Shadlen MN. Decision-making with multiple alternatives. Nat Neurosci. 2008;

11(6):693–702. Epub 2008/05/18. https://doi.org/10.1038/nn.2123 PMID: 18488024.

51. Drugowitsch J, Moreno-Bote R, Churchland AK, Shadlen MN, Pouget A. The cost of accumulating evi-

dence in perceptual decision making. J Neurosci. 2012; 32(11):3612–28. https://doi.org/10.1523/

JNEUROSCI.4010-11.2012 PMID: 22423085.

52. Bogacz R, Cohen JD. Parameterization of connectionist models. Behavior Research Methods, Instru-

ments, & Computers. 2004; 36(4):732–41. https://doi.org/10.3758/bf03206554 PMID: 15641419

53. Rowan TH. Functional stability analysis of numerical algorithms: The University of Texas at Austin;

1990.

54. Nelder JA, Mead R. A Simplex Method for Function Minimization. The Computer Journal. 1965; 7

(4):308–13. https://doi.org/10.1093/comjnl/7.4.308

55. Shadlen MN, Newsome WT. Neural Basis of a Perceptual Decision in the Parietal Cortex (Area LIP) of

the Rhesus Monkey. Journal of Neurophysiology. 2001; 86(4):1916–36. https://doi.org/10.1152/jn.

2001.86.4.1916 PMID: 11600651

56. Roitman JD, Shadlen MN. Response of neurons in the lateral intraparietal area during a combined

visual discrimination reaction time task. J Neurosci. 2002; 22(21):9475–89. https://doi.org/10.1523/

JNEUROSCI.22-21-09475.2002 PMID: 12417672.

57. Kiani R, Corthell L, Shadlen MN. Choice certainty is informed by both evidence and decision time. Neu-

ron. 2014; 84(6):1329–42. https://doi.org/10.1016/j.neuron.2014.12.015 PMID: 25521381.

58. Zung WWK. A Self-Rating Depression Scale. Archives of General Psychiatry. 1965; 12(1):63. https://

doi.org/10.1001/archpsyc.1965.01720310065008 PMID: 14221692
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