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ABSTRACT

Determining the neural basis of confidence and uncertainty holds promise for understanding foun-
dational aspects of human metacognition. While a neuroscience of confidence has focused on the
mechanisms underpinning subpersonal phenomena such as representations of uncertainty in the vi-
sual or motor system, metacognition research has been concerned with personal-level beliefs and
knowledge about self-performance. I provide a roadmap for bridging this divide by focusing on a
particular class of confidence computation: propositional confidence in one’s own (hypothetical) de-
cisions or actions. Propositional confidence is informed by the observer’s models of the world and
their cognitive system, which may be more or less accurate – thus explaining why metacognitive
judgments are both inferential and sometimes diverge from task performance. Disparate findings
on the neural basis of uncertainty and performance monitoring are integrated into a common frame-
work, and a new understanding of the locus of action of metacognitive interventions developed.

1 INTRODUCTION

Imagine you are revising for an upcoming exam in psychology. At various points leading up to the big day, you
wonder whether you know the material well enough, or not. Such an assessment might prompt further study, until
those uncertainties are diminished, and you feel more confident in being able to answer anything that is thrown at
you. Before going into the exam hall, you nervously compare your chances of success with your friends. Later, after
the exam is over, you think back over your answers, questioning whether it went well, or whether it could have gone
better. These forms of self-evaluation are instances of metacognition – the capacity to reflect on, evaluate and control
mental function in a variety of useful ways.

These are examples of metacognition about memory, or metamemory for short. But metacognition operates over a
range of domains. Consider a visit to the opticians for a new pair of glasses. In a typical eye exam, you will be asked
whether you are seeing the world more or less clearly through different lenses. This a metacognitive judgment about
your perceptions – the world is not blurry, but a limit on your visual acuity makes it seem so.

It is hopefully clear from these two examples that the accuracy of metacognition – whether or not our self-evaluative
judgments match up with the reality of cognitive or physical performance – is central to adaptive behaviour. If I
think that my knowledge about a topic is secure when it is in fact shaky, I might put down the books and go out with
friends, only to be in with a nasty shock on exam day. Similarly, if we are unable to realise when our vision (or
hearing, or memory) is failing, we will be unable to take steps to correct for physical or cognitive limitations. As such,
metacognitive dysfunction has been highlighted as a key source of maladaptive behaviour in educational, clinical and
societal contexts (Flavell, 1979, Hoven et al., 2019, Rollwage et al., 2018).
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Figure 1: Metacognitive judgments can be formalised as estimates of propositional confidence across a range of
domains and timescales.

Effectively estimating our uncertainty or confidence in a range of cognitive processes, and whether or not such con-
fidence judgments track objective performance (known as metacognitive sensitivity), is therefore central to effective
metacognition (Nelson & Narens, 1990). Miscalibrated confidence in success can lead to failure, even when our nat-
ural aptitude is more than adequate. Recently there has been surge of interest in the neuroscience of uncertainty and
confidence, leading to a marriage of computational work in cognitive science with human neuroimaging studies and
animal models of metacognitive judgments (Pouget et al., 2016, Meyniel et al., 2015). Partly because these fields were
steeped in the methods of psychophysics, and partly because of the cross-species tractability of perceptual paradigms,
the late 2000s saw the emergence of the field of perceptual (largely visual) metacognition, with a strong focus on the
neural and computational underpinnings of confidence judgments (Rahnev, 2021).

However, the rapid rise of this research program brings with it a set of pressing conceptual challenges. The neu-
roscience of confidence has tended to focus on the mechanisms underpinning subpersonal phenomena such as the
representation of uncertainty in the visual or motor system, often in tightly controlled laboratory tasks. Conversely,
metacognition researchers are interested in personal level beliefs and knowledge in real-world settings: why do I think
that I performed poorly on the exam? How do I recognize when I might have made a poor decision? Why is a patient
with Alzheimer’s disease unaware of their memory failures? How do children form beliefs about what they know and
do not know?

In this article I aim to provide a roadmap for bridging this divide. Metacognition and confidence researchers are
natural allies, but have often been uneasy bedfellows, with the latter thinking that the former are overcomplicating
things, and the former thinking the latter are riding roughshod over the richness of metacognition by reducing it down
to its computational primitives. I suggest that one solution to understanding the role of confidence in real-world
metacognition is to focus on a particular class of confidence computation – propositional confidence. Propositional
confidence is confidence in one’s own (hypothetical) decisions or actions – which include covert propositions (“I think
I will remember this word”; Figure 1). The most important idea, building on Pouget et al. (2016), is that propositional
confidence can be distinguished from a myriad of other confidences or uncertainties that are inherent to perception,
cognition and action – although the latter often inform the former (Meyniel et al., 2015). Propositional confidence is
also affected by the observer’s models of the world and their cognitive system, which may be more or less accurate –
thus explaining why metacognitive judgments are both inferential and sometimes diverge from task performance.
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2 SCOPE AND DEFINITIONS

The terms metacognition and confidence can take on different meanings in different research fields, and so it is useful
to spend some time providing explicit definitions.

By “metacognition”, I refer to the class of mechanisms that allow us to form beliefs about other mental operations.
Such beliefs (the monitoring aspect of metacognition) can then be harnessed for self-regulation (metacognitive con-
trol) and/or for communicating metacognitive assessments to others. Metacognition is a part of the wider set of human
executive functions, although conceptually and empirically distinct from fluid intelligence: it is possible (and indeed
common) to evaluate the operation of classical executive functions, for instance reflecting on whether a solution to
a logical puzzle was in fact appropriate (Ackerman & Thompson, 2017). The accuracy of such reflective judgments
shares variance with other forms of metacognitive sensitivity, rather than variance in IQ (Mazancieux et al., 2020,
Rouault et al., 2018a). Finally, metacognition also intersects with the literature on cognitive control, although again
with only partial overlap. Cognitive control typically refers to the set of functions that encode and maintain a repre-
sentation of the current (first-order) task. For instance, in Miller & Cohen (2001)’s classic model of cognitive control,
information in prefrontal cortex provides contextual signals to bias or route sensory information to establish the right
mapping between inputs, internal states and outputs. All of this machinery can be considered as being part of the same
(context-sensitive) first-order system. We can then apply metacognitive mechanisms to monitor task performance and
subsequently increase our reliance on cognitive control (Norman & Shallice, 1986). The literature on error correction
and performance monitoring has often been lumped together with the literature on cognitive control, but here would
also fall under the rubric of metacognition research.

By “confidence”, I mean the degree of belief one has about the likely success of a variety of mental operations.
Thus confidence here refers to propositional confidence – a feeling of surety about your abilities, judgments or ideas.
Confidence also has a more general meaning as a synonym with probability: as in, ascribing a high probability (high
confidence) that the sun will rise tomorrow. Such probabilities apply to external quantities, independently of an
observer. To add to the confusion, it is also possible that the brain itself uses probabilistic computation in a range of
processes, including the formation of feelings of confidence! To try to avoid confusion here I will follow Pouget et al.
(2016) and reserve the term confidence to refer to propositional confidence in a (mental or physical) action; and use
the term “certainty” (or its converse, uncertainty) to refer to degree of belief in other quantities.

I aim to bridge between work on subpersonal representations of uncertainty, personal-level feelings of confidence, and
the operation of metacognition more broadly. This necessarily means being selective in the empirical literature that
is most helpful in illuminating those relationships. As such, there are a number of topics that fall outside the scope
of the review, given limited space. These are: the development of metacognition; comparative research on animal
metacognition; links between metacognition, mental health and ageing (although see sidebar on Group and Individual
Differences); and interpersonal and intrapersonal functions of metacognition.

The outline of the article is as follows. In Section 3 I provide a brief overview of core findings in metacognitive neu-
roscience that motivate the current synthesis. Section 4 then deconstructs the different components of a personal-level
metacognitive judgment, and reviews the evidence for distinct components, with a particular focus on neuroscience.
An important concept here will be the notion of a “reference frame”. We can talk of uncertainty about things in the
world – such as sensory uncertainty about the orientation of a line, or the frequency of a sound. This is uncertainty
in a “world-centred” reference frame. But as we have seen, we can also talk of confidence in our own propositions or
actions – this is now uncertainty in a “self-centred” reference frame. I then turn to how such signals are read out or
broadcast in a format that is useful for guiding behaviour and communication to others, before evaluating the role that
model-based computation plays in providing contextual knowledge for metacognition.

The remainder of the paper asks how current controversies in metacognition research can be re-evaluated in light of
this framework – in particular, the origin of biases and suboptimalities in metacognition, how to arbitrate between
computational models of confidence, and whether or not we should consider metacognition as a domain-general re-
source. I close by highlighting some future directions that are motivated by this framework – in particular, searching
for common computational principles across different task domains; how we might extend models of local confidence
formation to understand the formation of metacognitive knowledge over longer timescales; and identifying the best
routes for interventions on metacognition.

3 PARADIGMS AND FINDINGS IN METACOGNITIVE NEUROSCIENCE

A range of behavioural paradigms investigating different types of metacognitive judgment have been devised, often
originating in work on metamemory – ranging from prospective “judgments of learning” to retrospective confidence
estimates in recall (Metcalfe & Shimamura, 1994). All, however, have in common that subjects are being asked to
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evaluate their (future or past) performance on another task. As we will see, such evaluations are naturally cast as
judgments of propositional confidence in the success of other mental operations. In humans, these judgments are
usually explicit and instructed – subjects are provided with a button or scale on which to indicate their confidence, or
are asked, in the confidence forced-choice paradigm, to pick from a pair of decisions the one they feel most confident
about (Mamassian & de Gardelle, 2022). In animal metacognition research, confidence estimates are elicited using a
variety of learnt second-order contingencies such as opting out of a decision, waiting for a reward that is contingent on
first-order task performance, and so on (Kepecs & Mainen, 2012). These so-called “implicit” measures of metacogni-
tion have recently found their way into innovative studies of infant metacognition, where explicit confidence elicitation
is less straightforward (Goupil & Kouider, 2016).

When we have data on a series of metacognitive judgments over time, we can examine the statistical association
between behavioural performance and metacognition. Intuitively, if you are confident when you are right, and less
confident when you are wrong, then you can be ascribed a high degree of metacognitive sensitivity (Fleming & Lau,
2014). Another relevant summary statistic for investigations of metacognition is metacognitive bias (also known as
calibration, or overconfidence) – the extent to which subjects tend to report higher or lower confidence, relative to
long-run performance. One challenge is to ensure measures of metacognitive sensitivity are unconfounded by other
factors, including task performance, metacognitive biases, and response times (see Sidebar).

Measurement of metacognition
Measures of metacognition in experimental tasks seek to estimate the statistical relationship between confi-
dence judgments and objective performance, known as metacognitive sensitivity. A central challenge in this
endeavour is to ensure metrics of metacognitive sensitivity are unconfounded by other influences. For in-
stance, simple correlations between accuracy and confidence depend not only on metacognitive sensitivity but
are also affected by performance and metacognitive bias (average confidence level; Fleming & Lau, 2014).
The meta-d’ model offers a performance-controlled metric of metacognitive sensitivity, by estimating the level
of first-order performance (d’) that would have given rise to the observed confidence data under a signal detec-
tion theoretic model (Maniscalco & Lau, 2012). The ratio meta-d’/d’ thus provides a performance-controlled
metric of metacognitive capacity (often referred to as metacognitive efficiency). However, the assumption that
meta-d’/d’ is fully independent of confidence and performance has been challenged (Guggenmos, 2021, Xue
et al., 2021). Alternative model-free approaches assess the mutual information between performance accuracy
and confidence reports (Dayan, 2022) or quantify the change in psychometric function slope as a function of
confidence (De Martino et al., 2013, de Gardelle & Mamassian, 2014).

With these metrics in place, two lines of work have emerged in metacognitive psychology and neuroscience over
the past few decades. The first has sought to catalogue both individual differences and interventions – either
experimentally-controlled, or naturally occurring in the form of brain damage or disorder – that affect metacognition
without affecting first-order task performance. A second line of work has focused on the psychological, computa-
tional and neural basis of confidence formation across a number of different task domains, in both humans and animal
models. Classical work in the cognitive psychology of metamemory has identified a range of cues that may affect
confidence judgments, but are unrelated to first-order performance. For instance, when attempting to recall a difficult-
to-retrieve item, the extent to which we can recall information related to the target (cue accessibility) predicts how
confident we are in being able to recognize the target (Koriat, 1993). A number of these influences on metamemory
judgments have been studied in depth – including target accessibility, fluency at encoding and retrieval, and response
time – leading to the broad proposal (that we will return to below) that metacognitive judgments are inferential in
nature, and draw on a range of helpful and unhelpful cues to performance (Metcalfe & Shimamura, 1994, Nelson
& Narens, 1990). Within the field of metaperception research, studies have documented dissociations between con-
fidence and accuracy as a function of attention (e.g., Wilimzig et al., 2008), variability in perceptual evidence (e.g.,
Zylberberg et al., 2014, Spence et al., 2016), asymmetries in the processing of supporting and disconfirming evidence
(e.g., Zylberberg et al., 2012, Miyoshi & Lau, 2020), and response times (e.g., Kiani et al., 2014). These research pro-
grams on individual differences and confidence formation naturally reinforce one another, as new discoveries about the
formation of confidence can shed light on the origins of individual and group differences, and identifying individual
and group differences in metacognitive efficiency provides hints about where to look for sources noise or suboptimality
in confidence formation.

Pioneering neuropsychological investigations of patients with frontal lobe damage have identified a key role for the
human prefrontal cortex in supporting metacognitive capacity, often on memory tasks (see Pannu & Kaszniak, 2005,
Fleming & Dolan, 2012, for reviews). The importance of prefrontal cortical function in metacognition has been
supported by recent studies in both humans and animals. Changes in confidence formation and metacognition (but not
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first-order task performance) are observed following temporary disruption or lesions to rostrolateral prefrontal cortex
(Brodmann areas 46 and 10) in humans and monkeys (Fleming et al., 2014, Shekhar & Rahnev, 2018, Miyamoto et al.,
2017, 2018, Kwok et al., 2019), and confidence-related behaviour is impaired following inactivation of orbitofrontal
cortex in rodents (Lak et al., 2014). Individual differences in perceptual metacognitive sensitivity have been similarly
linked to variation in the structure and function of human anterior prefrontal cortex (Fleming et al., 2010, McCurdy
et al., 2013, Baird et al., 2013, Allen et al., 2017). This picture of a unitary prefrontal correlate of metacognition
has been nuanced with observations in humans that distinct brain systems may predict metacognitive sensitivity in
perception and memory tasks (Baird et al., 2013, McCurdy et al., 2013, Fleming et al., 2014, Ye et al., 2018), and
that connectivity between prefrontal cortex and other brain areas is important for metacognitive capacity (Baird et al.,
2013, 2015, De Martino et al., 2013, Zheng et al., 2021).

Finally, a number of studies in both human and animal models have sought to relate variation in subjective confidence
reports, or confidence-related behaviours, to changes in neural activity measured either with single-unit recordings, or
mass univariate analyses of neuroimaging data. Many of these studies will be discussed in more detail in subsequent
sections. For now, it is sufficient to say that field has catalogued a wide variety of confidence-related neural signals
(Walker et al., 2022), with the functional anatomy of metacognition becoming both richer and more complex. Im-
posing order on these findings is one of the goals of this review: how can we square the often striking dissociations
between performance and metacognition observed in lesion studies, with the multiplicity of neural representations of
uncertainty and confidence? In the remainder of this article I develop the computational components of a metacogni-
tive judgment, beginning with a theoretical perspective, and then turning to consider the behavioural and neuroscience
evidence for each.

4 COMPONENTS OF A METACOGNITIVE JUDGMENT

4.1 Representing uncertainty

Metacognitive assessments refer to one’s degree of certainty or uncertainty about a particular mental operation. It is
thus natural that the uncertainty inherent to neural representations of sensory features should be highly relevant to
metacognition. When a doctor views an X-ray, the incoming visual information may be consistent with a number
of different interpretations (both of simple features such as lines and edges, and of more global properties such as
the presence or absence of a tumour). It is increasingly recognized that uncertainty is inherent to all stages of neural
computation, and that optimal behaviour requires sensitivity to such uncertainty. For instance, when combining infor-
mation from two different sensory modalities, the normative (Bayesian) solution is to weight the two sources inversely
according to their respective uncertainties.

Within perceptual systems, different competing theoretical schemas have been proposed for how the brain represents
uncertainty about particular quantities. Consider a judgment of the orientation of a low-contrast grating (Figure 2).
The sensory data underdetermines the true orientation, leading to uncertainty in the internal representation of orienta-
tion z (note this uncertainty is subjective uncertainty in the representation, rather than noise in the stimulus, although
the latter may affect the former). We can denote such uncertainty as a (posterior) probability distribution around the
most probable orientation. For instance, under a probabilistic population coding model, neurons encode parameters of
probability distributions, with different neurons tuned to different stimulus features (such as its orientation or colour),
such that a population of such neurons represents a probability distribution over features, given a sensory measurement
(Ma et al., 2006). Alternative schemes include sampling-based accounts (where samples from a distribution are accu-
mulated over time in the form of spikes) and summary-statistic accounts in which neuromodulators or other aspects of
brain activity carry uncertainty-related information (Fiser et al., 2010, Yu & Dayan, 2005).

For our current purposes, it is sufficient to note that a number of theoretical accounts propose that neural representations
come along with an implicit representation of the certainty with which that representation is held. Such distributional
uncertainty is thought to be encoded at a number of different levels from perception to cognition and action. As
a concrete example, a population of neurons in V1 might (implicitly) carry information about the uncertainty of
the orientation of a low-contrast bar; a population of neurons in auditory cortex may carry information about the
uncertainty of the frequency of a tone in noise, and so on. These examples hopefully make clear that the brain can and
likely does track uncertainty in a whole host of quantities. Bayesian theories of brain function additionally propose that
such uncertainties allow the appropriate weighting of messages passed up and down a cognitive hierarchy. Following
Meyniel et al. (2015) I refer to these uncertainty signals as implicit or distributional uncertainty, but such estimates
may also be transformed into scalar summary signals (for instance, a scalar signal of sensory uncertainty signaled by
the level of a particular neuromodulator).

A wide range of studies indicate that subjects take into account uncertainty in their behaviour, including in experiments
on perception, learning, memory and motor control (Kersten et al., 2004). Some of the most robust evidence for the
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representation and use of uncertainty comes from the literature on cue-combination in multisensory integration. If
subjects are asked to combine information across two sensory modalities, the weights they put on the two sources
of information is inversely proportional to their uncertainty, and approaches the predictions of an ideal Bayesian
observer (e.g., Ernst & Banks, 2002). Similarly, in the motor domain, subjects are sensitive to uncertainty in movement
production (for instance, the dispersion of rapid pointing movements), and use this information to alter their movement
strategies to avoid risky actions (Trommershauser et al., 2008).

Such studies, however, do not tell us whether uncertainty is used to inform metacognition. A number of studies
have presented evidence that confidence judgments are sensitive to the variability in perceptual evidence – although
sometimes to a greater or lesser degree than predicted by an ideal observer model (Zylberberg et al., 2014, Spence
et al., 2016, Boldt et al., 2017). Other work has revealed how people adjust their confidence criteria in the face
of changing stimulus uncertainty (Aitchison et al., 2015, Adler & Ma, 2018, Denison et al., 2018). However, such
results rely on comparing models fit across multiple trials and admit of heuristic accounts of how uncertainty affects
confidence. Establishing that uncertainty on individual trials is used to inform confidence judgments has proven more
difficult.

Neuroscience evidence makes a stronger case for uncertainty estimates informing confidence judgments. Kiani &
Shadlen (2009) found that activity in area LIP in the monkey brain both accumulated evidence for particular choice
options, and, when such activity was of intermediate strength, led to the monkeys opting out of their choice (a non-
verbal marker of low certainty about either motion direction). Importantly, variability in LIP firing rates predicted the
opt-out choice even when stimuli were held fixed, drawing a link between neural and behavioural markers of certainty
about motion direction. Note that such activity is in a world-centred reference frame (reflecting certainty about the
mapping between the stimulus and potential responses), rather than in a self-centred reference frame. However such a
representation naturally supports prospective propositional confidence estimates (“How confident am I in choosing A
or B, conditional on the evidence that I have gathered so far?”). The opt-out task is thus an ambiguous case – it can be
solved by relying on world-centred uncertainty estimates, or self-centred (metacognitive) confidence estimates, and it
is hard to tell which is in play based on behaviour or neural data alone.

Geurts et al. (2022) asked human participants to estimate the orientation of a tilted grating and judge their confidence
that their estimate was accurate. Within a Bayesian framework, it was expected that the more precise the representation
of orientation in visual cortex (the smaller the posterior uncertainty), the larger the propositional confidence in the tilt
estimate should be. This was the case in subjects’ behaviour. The authors then used a machine learning approach to
decode trial-by-trial uncertainty in the representation of particular orientations from fMRI voxel patterns within visual
cortex. They found that reported confidence was negatively correlated with such a readout of uncertainty, even when
the stimulus was held fixed.

There is thus good evidence that a) the brain represents uncertainty about a wide range of quantities b) that such uncer-
tainty is used to inform metacognitive judgments. It remains unclear how and whether a similar scheme is maintained
beyond sensory representations – for instance, when judging confidence in being able to remember something. Recent
fMRI evidence suggests similar population-level representations of uncertainty in visual working memory (Li et al.,
2021), and single unit activity in the human hippocampus predicts retrieval confidence levels (Rutishauser et al., 2015).
Sampling schemes offer another potential solution, allowing probability distributions over internal states to be formed
by drawing samples from internal models (Fiser et al., 2010).

4.2 Propositional confidence

Representing certainty or uncertainty in a self-centred frame of reference – what I refer to as propositional confidence
– is the foundation of metacognitive judgments. Computationally, this can be achieved by transforming an internal
(sensory or mnemonic) representation z into an estimate of confidence in taking an action based on z. For instance, if
z indicates a probability distribution (posterior) over possible orientations (Figure 2) and the observer’s task is to say
whether the orientation is clockwise or counterclockwise (a binary variable, d), a confidence judgment can be derived
from computing p(d = a|z, a) – the probability that action a picked out the correct world state d, given z. In a situation
where one’s action is based solely on z, then propositional confidence is a nonlinear transformation of z. However, if
there are additional sources of decisional or metacognitive noise, or if additional information arrives after committing
to a decision, then propositional confidence should also be affected by these factors (Fleming & Daw, 2017). In all
these cases, propositional confidence should be closely informed by estimates of uncertainty reviewed in the previous
section. The upshot is a confidence estimate in the “frame of reference” of the accuracy of one’s own judgments – a
self-related frame of reference.

It is natural to think of such a change in reference frame as being retrospective – I process some information, make a
decision, and then reflect on whether my decision was correct. Indeed, as we will see, post-decisional processing is an
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Figure 2: Graphical illustration of components of a perceptual metacognitive judgment. A generative model defines
how an observer forms a belief about the state of the world – here, the orientation of the stimulus – from a noisy sensory
measurement. This belief over possible orientations is associated with sensory uncertainty, and is converted into
propositional confidence conditional on a categorical decision – here, whether the stimulus is tilted clockwise (CW)
or counterclockwise (CCW). A propositional confidence estimate is globally broadcast for communication or usage in
confidence-based behaviours, for instance guiding risk-sensitive decision-making. Background beliefs about a range
of factors influencing self-performance are furnished by a self-model and influence the formation of metacognitive
judgments.

important empirical signature of this change in reference frame. But propositional confidence can also be prospective.
I might estimate, based on some uncertain information, the likelihood that a hypothetical decision based on that
information would be correct. Such prospective judgments can apply to propositions rather than individual actions –
for instance, the proposition that “I will remember this particular word” or “I will score a goal” (Figure 1). These
prospective confidence estimates may therefore underpin classical judgments of learning, or aspects of self-confidence
about ability.

More recently, defining decision confidence as a Bayesian probability of being correct has been challenged on both
empirical and theoretical grounds. Empirically, confidence closely tracks the probability of making a particular choice,
rather than objective notions of accuracy. For instance, if choice probability is biased by perceptual illusions, confi-
dence often follows suit (Caziot & Mamassian, 2021, Gallagher et al., 2019). Theoretically, it is also hard to define
notions of accuracy for subjective decisions, such as value-based choices or aesthetic preferences – and yet we can
still evaluate confidence in such decisions (De Martino et al., 2013, Lebreton et al., 2015). Instead, a more general
computational definition posits that propositional confidence reflects the probability of making a self-consistent choice
across multiple presentations of the same decision problem (Caziot & Mamassian, 2021, Koriat, 2012, Boundy-Singer
et al., 2023).
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Computing propositional confidence
Consider a visual perceptual task in which the decision-maker should classify the orientation of a stimulus s as
clockwise (CW) or counterclockwise (CCW) relative to some arbitrary boundary m (Bang & Fleming, 2018).
On a single trial, the observer makes a sensory measurement Xi. The posterior over possible orientations s is
then:

p(s|Xi) ∝ p(Xi|s)p(s)
Because measurements are affected by noise, for a single stimulus, the measurement Xi is a bit more or a bit
less than the true s. This can often be controlled by the experimenter, for instance by adjusting the contrast of
a grating or the coherence of a patch of randomly moving dots. Under greater noise, the likelihood of s given
Xi becomes wider (the first term on the righthand side), because the measurement is potentially consistent
with a wider range of true orientations. Assuming the prior stays constant, this also leads to a more uncertain
posterior over s (the lefthand side).
The observer now has an internal belief with some sensory (or mnemonic) uncertainty attached to it. But she
still needs to act on this information – in this example, saying whether the orientation is CW or CCW to the
boundary. Doing so requires specifying which actions are possible (mappings from s to a) and the cost or
reward associated with each. Here it is useful to specify an intermediate variable that captures relevant parts of
the stimulus space. d is CCW when s < m and CW when s > m. In the case of a simple perceptual decision-
making task that rewards correct decisions, the cost function C(d, a) is 1 when a = d, and 0 otherwise. We
can now define a new form of certainty about possible actions (Figure 2):

p(dCCW |ŝ) =
∫ m

−∞
p(s|Xi)

p(dCW |ŝ) =
∫ ∞

m

p(s|Xi)

where ŝ indicates the observer’s estimate of s.
Once we have committed to a potential action (an action that will occur, or has occurred), we can use the above
probabilities to compute the probability that the action was correct (that C(d, a) = 1):

p(a = d|ŝ)

This quantity is what I refer to as propositional confidence (Pouget et al., 2016).

There have been two broad approaches to studying the behavioural and neural basis of propositional confidence. One
is to simply ask for subjective reports of confidence about a future or past decision. These confidence judgments are
higher for objectively correct than incorrect decisions, showing sensitivity to performance, albeit often corrupted by
additional metacognitive noise (Shekhar & Rahnev, 2021). Convergent findings have emphasized the importance of
the human prefrontal cortex for the fidelity of propositional confidence estimates, with a meta-analysis revealing that
activity in medial and lateral prefrontal cortex, precuneus and ventral striatum covaries with judgments of confidence
in memory and perceptual tasks (Vaccaro & Fleming, 2018).

A second approach harnesses statistical signatures of confidence in a self-centred (decisional) frame of reference. A
prominent signature here is the “folded X” pattern: when confidence is plotted against objective measures of signal
strength (the inverse of decision difficulty), propositional confidence should increase with signal strength for correct
trials, and decrease with signal strength for error trials. The intuition here is that, while errors on easier trials will be
less frequent, those that do occur will be accompanied by significant evidence against the chosen option, leading to
lower confidence. This pattern is seen in both human and animal confidence data (Sanders et al., 2016), and has been
used as a marker of confidence-related physiological and neural signals (Urai et al., 2017). In a seminal study, Kepecs
and colleagues found that neurons in rodent OFC showed statistical signatures of confidence in a odour discrimination
task (Kepecs et al., 2008). Confidence signatures in OFC predict confidence-related behaviour (waiting for a reward,
conditional on performance) and generalise across both auditory and olfactory decisions (Masset et al., 2020), with
inactivation of this brain area impairing metacognition but not performance (Lak et al., 2014). The rodent OFC is
therefore a candidate neural substrate for propositional confidence.

A similar approach was adopted by Bang & Fleming (2018) in humans, in a fMRI study which manipulated both a
proxy for sensory uncertainty (motion coherence) and the difficulty of the choice. Human participants viewed a random
dot motion stimulus which indicated a particular direction around the circle with a given uncertainty, controlled by
coherence. They then saw a decision boundary appear, before being asked to decide whether the motion direction was

8



Metacognition and confidence: A review and synthesis

clockwise or counterclockwise of the boundary. This design dissociates propositional confidence in a choice (which
is affected by both sensory uncertainty and decision difficulty) from sensory uncertainty (though here uncertainty was
not directly assayed from neural representations, and was confounded with stimulus properties). Whereas sensory
uncertainty (motion coherence) was related to activity in extrastriate visual and parietal cortex (notably, areas MT+
and bilateral intraparietal sulcus, a human homologue of LIP), signatures of propositional confidence were instead
observed in ventromedial prefrontal cortex (perigenual anterior cingulate cortex, pgACC).

A complementary perspective on the neural basis of propositional confidence is provided by the literature on error
monitoring, which has typically used speeded response-conflict tasks to induce response errors under time pressure. A
canonical finding is that posterior medial frontal cortex neurons covary with error commission in the absence of feed-
back, generating an error-related negativity at the scalp surface (Desender et al., 2021). The ERN peaks approximately
100ms after the erroneous action, and arises before any feedback is given about the accuracy of the response. In animal
models, post-decisional firing rates of neurons in the prefrontal frontal cortex and dopaminergic midbrain have also
been shown to covary with choice correctness before explicit feedback is given (Tsujimoto et al., 2010, Middlebrooks
& Sommer, 2012, Kepecs et al., 2008). Within a reinforcement learning framework, one perspective on such signals
is that they reflect proxies for reward prediction errors driven not by external feedback, but by internal levels of choice
confidence (Guggenmos et al., 2016, Lak et al., 2017).

More recently, it has been argued that post-decisional accumulation of evidence facilitates the formation of proposi-
tional confidence (Desender et al., 2021). The idea here builds on classical evidence accumulation frameworks that
posit samples of sensory information are accumulated over a few hundred milliseconds before hitting the bound for
one or other choice option. Such models have been highly successful in accounting for choice and response time be-
haviour in a variety of decision scenarios, and neural correlates of evidence accumulation signals have been identified
in humans and animals. Moreover, as we saw above, the dynamics of evidence accumulation within the choice period
provide a neural representation of uncertainty that can be used to inform confidence (Kiani & Shadlen, 2009). Pleskac
& Busemeyer (2010) additionally proposed that this evidence accumulation process may continue after a decision has
been made, to inform estimates of decision confidence and potentially leading to changes of mind (van den Berg et al.,
2016a, Resulaj et al., 2009).

Post-decisional processes may either continue to accumulate sensory evidence for and against available choice alterna-
tives (world-centred reference frame), or accumulate evidence about the accuracy of the preceding choice (self-centred
reference frame). Murphy et al. (2015) and colleagues found that the ramping-like characteristics of a centroparietal
EEG signal, the Pe, was consistent with post-decisional evidence accumulation in a self-related reference frame. The
post-decisional build-up rate of this signal was proportional to the speed of subjective error detection, and reached a
constant amplitude at the point of detection that was independent of error-detection RT. Interestingly, the Pe signa-
ture is similar to the centroparietal positivity (CPP) that has been linked to pre-decisional evidence accumulation in
a world-centred reference frame. This suggests that the CPP and the Pe may reflect a general evidence accumulation
circuit that can flexibly adapt reference frames in the service of both first-order performance and metacognition. Boldt
& Yeung (2015) found that the Pe amplitude also predicts graded ratings of confidence in choice, highlighting how
this accumulation signal goes beyond all-or-nothing error detection.

These studies investigated endogenous post-decisional accumulation of evidence. It is also possible to experimentally
manipulate the availability of post-decisional information. Computationally, injecting additional post-decision evi-
dence should promote the folded X-pattern in confidence ratings, due to a greater opportunity for gaining evidence
against an incorrect decision. In a study of random dot motion discrimination, providing stronger post-decision evi-
dence indeed led to a stronger folded-X pattern in confidence ratings (Fleming et al., 2018). This folded-X signature
was observed in the fMRI activity of the posterior medial frontal cortex, consistent with this region (negatively) accu-
mulating evidence in a frame of reference of choice accuracy, and providing a computational bridge between studies
on confidence and error monitoring.

4.3 Global broadcast and communication

For propositional confidence to be useful to guide flexible behaviour, it should be broadcast to a number of different
consumer systems (Baars, 1993). This would allow different propositional confidences to be compared in a common
frame of reference – allowing the agent to decide, for instance, that they are more likely to be successful in judgments
of one or other task or sensory modality (Aguilar-Lleyda & de Gardelle, 2021). The global broadcast of confidence can
also be used as a learning signal in lieu of external feedback – allowing the online detection of errors, and consequent
adjustments to behaviour (Guggenmos et al., 2016). Interestingly, propositional confidence may emerge in parallel
to the decision (or proposition) itself, and be used to shape the ongoing decision process, for instance, controlling
the termination of evidence accumulation (Balsdon et al., 2020) or guiding the next step in a sequential decision (van
den Berg et al., 2016b). Finally, global broadcast of propositional confidence is important for the public sharing
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of metacognitive representations in group settings: we might say to a colleague, “I believe this is the right thing
to do”, thereby influencing the course of the group’s decision (Bahrami et al., 2010, Shea et al., 2014). Mappings
between “private” feelings of confidence and public utterances lead to additional computational considerations. In a
collaborative context, it is important to align the distribution of our confidence statements with those of others, to avoid
dominating a group interaction (or being dominated ourselves; Bang et al., 2017). However, if we wish to strategically
influence the group, it might be advantageous to over (or under-)state our public confidence (Hertz et al., 2017).

Global broadcast is proposed to covary with conscious awareness of a range of mental content, including metacogni-
tive representations (Dehaene et al., 2017). This implies that forms of propositional confidence that remain restricted
to a particular sensorimotor pathway, and not globally shared, may underpin non-conscious forms of metacognition
(Charles et al., 2013, Logan & Crump, 2010). We may also consciously experience other forms of perceptual uncer-
tainty beyond propositional confidence (Morrison, 2016), and such uncertainty estimates may themselves affect what
content is globally broadcast (Shea & Frith, 2019).

Behaviorally, elegant work has shown that people are able to estimate and compare propositional confidence about de-
cisions made in two different sensory modalities, indicating that domain-specific confidence estimates can be broadcast
and shared (de Gardelle et al., 2016). There is also emerging evidence that metacognitive capacity (measured as the
noise in metacognitive judgments, relative to performance) covaries across perceptual and cognitive tasks, suggest-
ing a global resource that is leveraged to monitor self-performance (Rouault et al., 2018b, Mazancieux et al., 2020,
Boundy-Singer et al., 2023).

A common currency for confidence may be supported by modality-independent confidence signals in the rodent (Mas-
set et al., 2020) and human (Morales et al., 2018) prefrontal cortex. Recently, an impressive study conducted single-
unit recordings in human neurosurgical patients performing two distinct tasks in which errors were relatively common
(Fu et al., 2022). At the population level, posterior medial frontal cortex cells formed a high-dimensional repre-
sentation that allowed simple linear decoders to read out both domain-general error signals, and simultaneously to
differentiate domain-specific aspects of performance monitoring, such as the task and type of response conflict that
gave rise to the error.

Performance monitoring signals are sensitive not only to the objective act of making an error, but also to subjective
error awareness (Nieuwenhuis et al., 2001) and decision confidence (Boldt & Yeung, 2015), albeit with some intriguing
dissociations that may indicate specific roles in global broadcast. The Pe (described in the last section as being a
candidate for post-decisional evidence accumulation) has been linked to error awareness and shown to covary with
subjective confidence, whereas the ERN and its pMFC source are thought to also operate unconsciously (Charles
et al., 2013). Consistent with this perspective, fMRI neural correlates of evidence against a choice were tracked in
pMFC (the neural generator of the ERN), whereas more anterior prefrontal regions covaried with subjective confidence
(Fleming et al., 2018).

An alternative perspective on the neural basis for broadcast and communication is provided by studies that have
explicitly manipulated the requirement for a metacognitive judgment. For instance, one might compare trials on which
a decision is made together with a metacognitive judgment of confidence, against a control condition where the same
kind of decision is made, but now the rating is about another property of the stimulus (eg its brightness or size). Such
comparisons have highlighted a network of prefrontal regions, notably the dorsal anterior cingulate cortex and lateral
frontopolar cortex, in which activity is heightened when metacognitive judgments are required (Fleming et al., 2012,
Qiu et al., 2018, Yeon et al., 2020).

A particularly detailed perspective on metacognitive judgment-related neural activation was provided by Gherman &
Philiastides (2018). Using EEG-informed fMRI, they could separate early neural activations correlating with con-
fidence, from later activations linked to the requirement for an explicit metacognitive judgment. Early confidence
related signals were seen in the ventromedial prefrontal cortex (in a similar pgACC region identified by Bang & Flem-
ing), whereas later judgment-related activation was seen in the lateral frontopolar cortex. Finally, in the study by
Geurts et al. (2022) described above, the decoder’s readout of sensory uncertainty in early visual areas was correlated
with univariate fMRI signals in the prefrontal cortex, consistent with domain-specific uncertainty estimates informing
globally available estimates of propositional confidence.

An alternative approach to assaying the behavioural and neural signatures of broadcast and communication experimen-
tally dissociates “private” estimates of propositional confidence from the “public” estimates that are communicated to
others. One natural way of achieving this is in a group context where individuals have to pool their confidence esti-
mates to drive a group decision. Previous work has shown that when individuals are collaborating in this way, the two
partners rapidly and naturally adapt their confidence levels to converge on a common scale, so that one does not dom-
inate the other (Bang et al., 2017). In an fMRI study of such social coordination about random dot motion judgments,
it was found that whereas ventromedial prefrontal cortex (pgACC) covaried with private estimates of propositional
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confidence, as in previous work, lateral frontopolar cortex additionally carried information about the extent to which a
private-public mapping should be adjusted when communicating a public judgment (Bang et al., 2020). These findings
are intriguing in light of other work emphasizing the role of frontopolar cortex in metacognitive efficiency (Fleming
et al., 2010, Miyamoto et al., 2018, Baird et al., 2013, McCurdy et al., 2013, Allen et al., 2017). Such findings have
often been interpreted as indicating a role for the frontopolar cortex in supporting metarepresentations, with the im-
pairment of the functions of this region leading to greater metacognitive noise. An alternative hypothesis is that the
frontopolar cortex constrains metacognitive efficiency by maintaining a stable private-public mapping, with instability
in this mapping manifesting as a weaker coupling between metacognition and performance.

4.4 The role of self-models

Up until now we have considered a relatively lean, minimal notion of propositional confidence, one that is directly
informed by the internal states driving behaviour (sometimes known as a “first-order” model of confidence formation).
However there is also a range of findings on human metacognition that suggest propositional confidence makes use of
a richer (implicit) model of the factors affecting performance. The idea here is that, just as we build up a theory of how
other minds work, we also build up a model of the factors affecting our own mental operations, and bring that model to
bear when making metacognitive judgments (Nelson & Narens, 1990). Some of these background beliefs about how
our minds work may be acquired via learning, or culturally inherited – as when children are instructed that feelings
of fluency might produce misleading boosts in confidence, and they would be wise to slow down and reconsider their
answer (Heyes et al., 2020). Differences between cultures in how these beliefs are acquired may account for findings
of cultural differences in confidence and metacognition (Yates et al., 1998, van der Plas et al., 2022), and how people
process self-related feedback (Kitayama et al., 1997). Other background beliefs may be more innate and furnished by
evolution, such as associations between interoceptive states and confidence (Allen et al., 2016, Fiacconi et al., 2016).

A long-standing proposal is that model-based contributions to metacognition rely on extensions of the model(s) that
guide our predictions of the mental states and behaviours of other people – a capacity known as theory of mind or
mentalizing (Carruthers, 2009). More generally, the implication is that we do not have direct access to first-order
cognitive processes, and instead have to infer their status from a variety of cues, just as we infer what others think or
feel from observing their behaviour. This view casts (model-based) metacognition as operating on similar principles
to perception, in that both rely on the principles of (unconscious) inference.

A prominent theory in the metamemory literature proposes that a variety of cues affect metacognitive judgments via
an inferential process. This renders metacognition susceptible to illusions and distortions – metacognitive analogues
of perceptual illusions (Alter & Oppenheimer, 2009). For instance, we may hold a belief that faster decisions are more
likely to be accurate, and use these feelings of fluency to inform our confidence estimates (Kiani et al., 2014). Similar
boosts in fluency can be achieved by increasing the brightness of a face stimulus (Busey et al., 2000), or the font size
of a word stimulus (Hu et al., 2015) – leading to greater confidence in recall without any change in performance. Other
work indicates that interoceptive factors influence confidence judgments even if they are irrelevant to the decision at
hand (Fiacconi et al., 2016). For instance, Allen et al. (2016) found that subliminally presented disgusted faces led not
only to changes in pupil dilation and heart rate, but also modulated confidence in a perceptual (random dot motion)
decision. The existence of these effects indicate the influence of an (implicit) self-model at work in the construction
of explicit confidence judgments in a range of domains.

There has been relatively little work assaying the computational basis of model-based metacognitive inference, or how
such models are instantiated in the brain. One possibility is that self-models furnish beliefs about the parameters of
the confidence formation process (which may not always match the actual parameters of such a process; Fleming
& Daw, 2017, Khalvati et al., 2021, Marcke et al., 2022). For instance, Hu et al. (2021) suggested that people’s
judgments of learning are constructed by integrating their processing experience on single trials with prior beliefs
about how different cues affect memory performance – even if such cues do not promote objective success. Similarly,
in the perceptual domain, Winter & Peters (2022) found that people misperceive sensory noise in the periphery of
the visual field, leading to an inflation of perceptual confidence relative to perceptual acuity. This work implies a
close connection between model-based influences on metacognition and the role of priors in propositional confidence
formation. In an elegant experiment, Marcke et al. (2022) modulated people’s priors on perceptual confidence through
the use of false feedback on their relative scores compared to other participants. This influence was best-captured by a
model in which the parameters relating evidence accumulation to confidence were modified by a prior belief, without
affecting objective accuracy or response times.

Effects of self-action on metacognitive judgments are another potential manifestation of model-based influences on
confidence formation. Fleming & Daw (2017) proposed that a confidence computation may leverage information
provided by one’s own actions when inferring whether a decision is likely to be correct. Tell-tale signs of this effect
have been confirmed empirically: metacognitive sensitivity is often better when confidence judgments are provided
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after, compared to before, an explicit decision has been made (Siedlecka et al., 2016, Pereira et al., 2020, Wokke et al.,
2020), with activity in frontopolar and insula cortex, and beta-band synchrony between motor and frontal cortex,
hypothesized to mediate the impact of self-actions on metacognitive estimates (Wokke et al., 2020, Pereira et al.,
2020). Conversely, metacognitive sensitivity is reduced when a task-relevant motor action is disrupted by applying
transcranial magnetic stimulation over premotor cortex (Fleming et al., 2015). While these findings remain to be fully
assimilated into computational models of confidence, they indicate that metacognitive judgments are sensitive to a
range of internal cues that go beyond first-order performance.

More broadly, as noted above, one influential view is that model-based influences on metacognition may draw on
similar resources to those supporting mentalizing about others. There is circumstantial evidence for this link, with
similar developmental trajectories (both metacognition and mentalizing emerge around the age of 3-4) and overlap
in neural correlates (particularly in the medial prefrontal cortex; Vaccaro & Fleming, 2018). Recently, in an elegant
series of studies, Nicholson and colleagues found that perceptual metacognitive sensitivity on a task requiring ex-
plicit confidence judgments (but not, intriguingly, one requiring an implicit gamble of the kind often used in animal
metacognition experiments) correlated with mentalizing abilities, and was impaired in subjects with autism spectrum
disorder. In addition, a secondary mentalizing task (but not another, equivalently demanding task) interfered with
explicit metacognitive judgments (Nicholson et al., 2021). Together this work suggests that the model-based compo-
nent of human metacognition may co-opt social cognitive resources – although how such resources interface with the
bottom-up aspects of propositional confidence formation reviewed above remains to be determined.

5 CONFIDENCE FORMATION AND THE PSYCHOLOGY OF METACOGNITION

We can now take stock and consider how these different computational stages interact, and map onto the psychology of
metacognition. First, myriad uncertainties exist at all stages of perception and cognition. Such uncertainties encompass
not only well-studied perceptual systems, but also internal uncertainties arising from memory, or uncertainties in
interoception. Sensitivity to uncertainty is a central aspect of (first-order) Bayesian computation, but alone is not
evidence for metacognition. A further stage encodes confidence relative to a proposition – a (hypothetical) statement
or decision – in a self-centred reference frame. This stage qualifies as (model-free) metacognition in that it has a
mental state of the self (the proposition) among its correctness conditions (Carruthers & Williams, 2022). A sensible
agent will make use of domain-specific uncertainty when forming propositional confidence, and in some constrained
scenarios the latter will be a minor transformation of the former (consider, for instance, a posterior belief over potential
motion directions that is transformed into propositional confidence in a specific choice option). It is therefore important
to be aware that some tasks held to measure metacognition such as the opt-out task are often ambiguous with respect
to whether they are tracking metacognitive (propositional) confidence, or world-centred uncertainty. Propositional
confidence can be globally broadcast and used in a range of metacognitive control functions – including strategically
adjusting how confidence estimates are communicated to others. Finally, the formation of propositional confidence
may itself be influenced by an implicit model of how first-order cognitive systems operate.

These different stages can tentatively be mapped to systems-level interactions between brain areas. As noted above,
early sensory areas may represent uncertainty over sensory variables such as motion direction, whereas prefrontal
regions such as pMFC and vmPFC track propositional confidence. Lateral frontopolar cortex is recruited to allow
global broadcast and strategic communication of propositional confidence estimates. We can also make a tentative
proposal that regions involved in theory of mind – including ventromedial and dorsomedial PFC, and temporoparietal
junction – may support self-models that contribute to model-based metacognition (Wittmann et al., 2016, Vaccaro
& Fleming, 2018). However, it is important here to distinguish between propositional confidence in self-actions,
propositional confidence in the actions of others, and the roles that models of self and other play in the formation of
metacognitive judgments. Recent brain imaging studies suggest propositional confidence formation in self and other
draws on distinct brain networks (Bang et al., 2022, Jiang et al., 2022), but that dorsomedial PFC may act as a common
node for furnishing model-based information for both metacognition and mentalizing (Jiang et al., 2022, Wittmann
et al., 2016).

Although these components have up until now been presented as distinct, this is for didactic convenience, and we
should expect mutual interactions between each to be the norm. Indeed, understanding the interrelationships between
different stages of metacognitive computation is only just beginning to be investigated (Geurts et al., 2022, Shekhar &
Rahnev, 2018, Bang & Fleming, 2018), but represents a major goal for the field (Rahnev et al., 2022). One possibility
is that neural codes within different frames of reference emerge and are maintained in parallel, serving different
computational goals. For instance, evidence may be accumulated about particular sensory features (world-centred
frame of reference), and simultaneously about (future or past) choice correctness (self-centred frame of reference)
– with the latter feeding back to set the bound on current or future sensory evidence accumulation (Balsdon et al.,
2020). As such, it is likely to be more fruitful to view metacognition as emerging from a set of dynamically interacting
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internal states, some of which are world-centred, and others of which encode beliefs about one’s propositions or
decisions (Yeung & Summerfield, 2012).

6 REVISITING CURRENT CONTROVERSIES

6.1 Biases and suboptimalities in confidence

A long-running debate in the field is between those who consider confidence (and by implication, metacognition) to
be inherent to the decision process, and those who consider it to depend on additional machinery or computation.
In emphasizing multiple computational components, the current framework provides a resolution of this tension. In
certain scenarios, such as the decision to opt out of a well-constrained decision problem, propositional confidence can
be derived from a direct transformation of the accumulated evidence for one or other choice (Kiani & Shadlen, 2009,
van den Berg et al., 2016a). But in other scenarios, particularly when post-decisional accumulation of evidence is in
play, or when there are multiple model-based cues to confidence, a second stage of propositional confidence formation
may be involved – particularly when it is functionally advantageous to broadcast such confidence to multiple distinct
consumer systems. In that situation, dedicated machinery for the readout and usage of propositional confidence (for
instance in PFC) may be the norm rather than the exception, with lesions or damage to these downstream areas
manifesting as selective metacognitive deficits, and presenting more opportunity for deviations from ideal observer
models to occur.

A fruitful approach to pursuing the computational basis of metacognition, then, is to explicitly model these different
stages and ask how noise or suboptimalities within each component may contribute to metacognitive inefficiencies
(Shekhar & Rahnev, 2021, Guggenmos, 2022, Mamassian & de Gardelle, 2022). For instance, Boundy-Singer et al.
(2023) identify meta-uncertainty about sensory uncertainty as a key domain-general constraint on the fidelity of propo-
sitional confidence estimates in both perceptual and cognitive decision tasks. In turn, constraints on post-decisional
evidence accumulation may affect the extent to which confidence estimates faithfully track performance (Pleskac &
Busemeyer, 2010, Desender et al., 2022). When interacting with others, there is a requirement to maintain distinct
models for ourselves and others, and selecting the correct model may be computationally demanding: Wittmann et al.
(2016) found that when tracking the performance of oneself and others, people sometimes “merged” their feedback
with those of others. This intertwining of models of self- and other-performance was associated with differences
in activity in dorsomedial prefrontal cortex, and disrupting this area using TMS led to greater self-other mergence
(Wittmann et al., 2021) – suggesting that one function of this brain region is not only to support models of ourselves
and others, but also to keep these models apart. More generally, different suboptimalities may co-exist and the same
kind of computational constraints that affect first-order cognition are likely to affect the suboptimality of metacognition
(Rahnev & Denison, 2018).

One metacognitive bias that has received particularly detailed theoretical and empirical scrutiny is the “positive ev-
idence” bias (PEB). The PEB manifests as confidence being more affected by evidence in favour of a choice than
evidence against it (Zylberberg et al., 2012), such that an increase in overall evidence results in boosts in confidence
despite performance remaining unaffected. Initial theoretical explanations proposed that the PEB may result from a
bias in the broadcast or readout of propositional confidence estimates, or a heuristic applied to evidence spaces that
are often detection- rather than discrimination-like (Miyoshi & Lau, 2020, Maniscalco et al., 2021). More recently,
though, empirical and modeling studies have led to surprising conclusions that constrain the origins of the PEB. First,
a PEB emerges within a convolutional neural network that is trained to both discriminate digits and estimate the prob-
ability correct of these classifications – indicating that a PEB may not be a foible of human metacognition, but a core
feature of how high-dimensional evidence spaces are mapped to propositional confidence (Webb et al., 2022). Second,
the PEB can be “flipped” – creating a negative evidence bias – if the decision is reframed as a search for the weaker
response option (e.g. fewer dots, or a disliked item; Sepulveda et al., 2020). Together these findings point towards a
model in which the PEB may be a feature of how propositional confidence is formed, rather than a bias in the tracking
of domain-specific uncertainties.

6.2 Sources of domain-generality

Another contested issue is the extent to which metacognitive capacities should be considered domain-general, or
domain-specific. Behaviourally, individual differences in metacognitive efficiency have been shown to be correlated
across distinct task domains, after controlling for correlations in performance (Mazancieux et al., 2020, Rouault et al.,
2018b, Ais et al., 2016, Faivre et al., 2018). However, the strength of these correlations is often weak and variable, es-
pecially in smaller samples used in neuroimaging research (see Rouault et al., 2018b, for a meta-analysis). In addition,
there are concerns that factors only indirectly related to metacognitive capacity may contribute to findings of domain-
generality – such as how confidence scales are used, or the adoption of a particular thresholds for post-decisional
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evidence accumulation (Xue et al., 2021, Desender et al., 2022). Findings of domain-generality in metacognitive bias
(average confidence level) are more robust, and have been related to features of both personality and mental health
(see Sidebar).

Set against findings of correlated individual differences are findings of both domain-specificity in the neural basis of
metacognition, and domain-specific impairments in metacognitive efficiency following lesions or experimental inter-
vention. One particularly consistent set of findings points to a selective role for medial parietal cortex (precuneus)
in metamemory (McCurdy et al., 2013, Baird et al., 2013). Accordingly, lesions to the frontopolar cortex (but not
precuneus) lead to impaired metaperceptual efficiency, but leave metamnemonic efficiency (as assayed by recogni-
tion memory confidence) intact (Fleming et al., 2014). The reverse dissociation is seen with theta burst TMS to the
precuneus, which impairs metamnemonic but not metaperceptual efficiency (Ye et al., 2018).

The current framework provides an opportunity to integrate these findings. A positive manifold in individual dif-
ferences in healthy metacognition may be mediated by common downstream processes involved in the formation of
propositional confidence and/or its global broadcast. Conversely, domain-specific limitations may be imposed by how
domain-specific uncertainty is propagated into a propositional confidence computation, and/or the fidelity of model-
based estimates of uncertainty parameters (uncertainty about uncertainty; Boundy-Singer et al., 2023, Khalvati et al.,
2021). For instance, one plausible although speculative role for the precuneus in metamemory is that it is involved in
translating uncertainty-related information carried by hippocampal neurons (Rutishauser et al., 2015) into a (prospec-
tive or retrospective) propositional confidence judgment. Understanding these interactions will be aided by new data
analysis approaches that seek to understand which variables can be easily read out from mixed selectivity neural
populations – with the possibility that both domain-general and domain-specific components of confidence formation
co-exist within the same brain area (Fu et al., 2022, Morales et al., 2018). At a behavioural level, future work should
seek to move beyond examining correlations in descriptive statistics such as meta-d’, and instead seek to characterize
the computational stages at which domain-generality in metacognition emerges (Boundy-Singer et al., 2023, West
et al., 2022).

Individual and group differences
Metacognitive efficiency shows moderate test-retest reliability, both across different sessions of the same ex-
periment (Fleming et al., 2010, Ais et al., 2016) and across different days (Wright et al., 2012). Metacognitive
bias (calibration) shows stronger test-retest reliability, with stable confidence “fingerprints” seen across differ-
ent tasks and testing sessions (Ais et al., 2016). A number of studies have linked local and global metacogni-
tive biases to individual differences in transdiagnostic mental health symptoms, including anxiety, depression,
self-esteem and compulsivity (Hoven et al., 2019, Seow et al., 2021). Conversely, metacognitive efficiency is
predictive of individual differences in dogmatism about real-world issues such as politics and climate change
(Rollwage et al., 2018, Fischer et al., 2019), with parameters governing confidence formation correlating with
people’s openness to new information (Schulz et al., 2020).

7 WHERE NEXT?

7.1 Searching for common computational principles

As indicated in the preceding section, a key next step is to move beyond the useful but artificial division of metacogni-
tion research into distinct domains, such as memory or perception, to characterize common computational principles
that constrain metacognitive capacity. In this respect, the often segregated fields of perceptual and memory metacog-
nition research can learn a lot from each other, and further cross-fertilisation will no doubt reap benefits. For instance,
the metaperception field has developed psychophysical paradigms that allow the detailed computational modeling of
pre- and post-decisional processes, in which hundreds of trials per participant are often required to fully characterize
the joint distribution of accuracy, response time and confidence. These endeavours have been accelerated by the de-
velopment of the Confidence Database and the adoption of consensus goals in the field (Rahnev et al., 2020, 2022).
Conversely, the metamemory field has tended to leverage more naturalistic stimuli (memory for faces, for instance) and
developed clever experimental designs to carefully unpack the contribution that a range of cues make to metacognitive
judgments – for instance, the illusory boosts in confidence that ensue from manipulations of fluency.
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7.2 From local to global metacognition

Most research on propositional confidence has focused on “local” judgments of performance on individual trials or
task episodes. In contrast, a distinct literature in social and clinical psychology has focused on how people evaluate
themselves at a global level – for instance, their self-efficacy, or estimates of their abilities relative to others. These
global self-evaluations are related to future attainment (via an impact on motivation and task engagement) and may
govern adaptive behaviour such knowing when to seek help or offload to the environment. However, little is known
about how local metacognitive computations influence and shape self-evaluations over this longer timescale.

One fruitful approach considers global confidence as a higher-order prior on estimates of (local) propositional con-
fidence (Marcke et al., 2022, Boldt et al., 2019), which can be naturally modeled as a probability distribution over
expected success (Rouault et al., 2019). In the absence of any local task experience, people access this prior when
making confidence judgments – for instance, estimating the chances they will score from a free kick (Figure 1). In
turn, this prior can be updated in light of local (retrospective) confidence in individual actions or decisions. Tentative
evidence for this view comes from experiments in which subjects provided intermittent global confidence estimates
on a perceptual task (Rouault et al., 2019, Lee et al., 2021). Global confidence was informed by local confidence fluc-
tuations during the previous block, and using fMRI, it was found that the vmPFC and precuneus may integrate local
confidence over longer timescales to track aggregate self-performance (Rouault & Fleming, 2020, Wittmann et al.,
2016).

Another perspective on how propositional confidence unfolds over longer timescales is provided by studies that have
examined how subjects estimate the probability of making task errors based on recent experience. In an elegant
paradigm, Purcell & Kiani (2016) found that subjects track a prior on propositional confidence by integrating evidence
over multiple trials, and leverage this prior on expected task accuracy to decide whether to switch strategy (in effect,
reaching a threshold at which they decide to blame the error on the task, rather than themselves). Neurons in monkey
pMFC (anterior cingulate cortex) were found to integrate information about previous trials and drive decisions about
whether to switch strategy (Sarafyazd & Jazayeri, 2019). Similarly, in human pMFC, neuronal populations signal
expected conflict probability (a proxy for propositional confidence) across trials as a state variable that is orthogonal
to within-trial dynamics, just as might be expected for neural activity encoding a prior on confidence level (Fu et al.,
2022).

7.3 Opportunities for metacognitive interventions

Interventions to modify metacognition are in their infancy, but here too progress could benefit from understanding
which computational stage(s) are being affected. Previous work has suggested that metacognitive efficiency may be
modulated in response to meditation (Baird et al., 2014), drugs (Hauser et al., 2017), neurofeedback (Cortese et al.,
2016), brain stimulation (Shekhar & Rahnev, 2018) and training (Carpenter et al., 2019). However, with some notable
exceptions (Shekhar & Rahnev, 2018), the locus of action of these effects remains poorly understood. Knowing which
steps in a computational chain are targeted by an intervention helps both to identify how and whether metacognitive
boosts are likely to generalise beyond the lab, and what functional benefits they might provide. For instance, a beta
blocker may inhibit the contribution of model-based interoceptive cues to confidence estimates, therefore improving
metacognitive efficiency on a constrained laboratory task, but impairing it in situations where those cues are more
valid. As another example, delivering feedback to improve confidence calibration over a period of two weeks shows
promise in elevating metacognitive efficiency, not only on the trained task, but also more broadly (Carpenter et al.,
2019). However, recent work suggests that the incentives underpinning this intervention primarily acted upon the way
that confidence was communicated via a confidence scale (Rouy et al., 2022) – perhaps at the level of a private-public
mapping, rather than at the level of propositional confidence formation. Such an intervention may still be useful in
social situations where public confidence estimates are being pooled across observers, but less useful in cases in which
propositional confidence is being used for intrapersonal control.

8 CONCLUSIONS

The fields of metacognition and confidence research are natural allies, but have often been uneasy bedfellows. Here I
argue that metacognition research is the study of propositional confidence in all its forms. Once this is recognised, it
opens up the problem of how different computational components of confidence formation interact – including those
supporting the rich self-models that humans bring to bear when evaluating their behaviours and internal states. In this
endeavour, the different subfields of metacognition research have a lot to learn from each other. There is no reason to
think that representations of uncertainty are any less relevant for understanding metamemory, or that the contribution
of self-models and other heuristics are no less relevant for understanding perceptual confidence. A research program
that bridges this divide, and that seeks to understand the full range of computational stages underpinning human
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metacognition, will likely benefit from the lessons that can be gleaned from both of these literatures. In turn, disparate
findings on the neural basis of uncertainty and performance monitoring can be integrated into a common framework,
and a new understanding of the locus of action of metacognitive interventions achieved.

Summary points
1. Confidence research has focused on subpersonal representations of confidence and uncertainty in

sensory or motor tasks.
2. Metacognition research is concerned with personal-level beliefs about performance.
3. These viewpoints can be reconciled by recognising metacognitive judgments as propositional confi-

dence estimates about (hypothetical) decisions or actions.
4. A key step in forming propositional confidence is shifting between encoding uncertainty in world-

and self-centred frames of reference.
5. Propositional confidence can be globally broadcast to support a range of metacognitive control func-

tions, including social communication.
6. Model-based influences on confidence formation (such as beliefs and priors about performance) may

share parallels with theory of mind.

Future issues
1. What are the common computational principles that constrain metacognitive capacity across do-

mains?
2. How can computational models of confidence formation capture model-based influences on metacog-

nition?
3. Do model-based influences on metacognition share neural and computational resources with theory

of mind?
4. Can models of confidence developed in psychophysical experiments be generalised to naturalistic

scenarios?
5. Can novel metacognitive interventions be developed based on a refined understanding of the compu-

tational components of confidence?
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Faivre N, Filevich E, Solovey G, Kühn S, Blanke O. 2018. Behavioral, Modeling, and Electrophysiological Evidence
for Supramodality in Human Metacognition. The Journal of Neuroscience 38(2):263–277
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Wittmann MK, Trudel N, Trier HA, Klein-Flügge MC, Sel A, et al. 2021. Causal manipulation of self-other mergence
in the dorsomedial prefrontal cortex. Neuron 109(14):2353–2361.e11

Wokke ME, Achoui D, Cleeremans A. 2020. Action information contributes to metacognitive decision-making. Sci-
entific Reports 10(1):3632

Wright ND, Edwards T, Fleming SM, Dolan RJ. 2012. Testosterone induces off-line perceptual learning. Psychophar-
macology 224(3):451–457

Xue K, Shekhar M, Rahnev D. 2021. Examining the robustness of the relationship between metacognitive efficiency
and metacognitive bias. Consciousness and Cognition 95:103196

Yates JF, Lee JW, Shinotsuka H, Patalano AL, Sieck WR. 1998. Cross-cultural variations in probability judgment
accuracy: Beyond general knowledge overconfidence? Organizational behavior and human decision processes
74(2):89–117

Ye Q, Zou F, Lau H, Hu Y, Kwok SC. 2018. Causal Evidence for Mnemonic Metacognition in Human Precuneus.
Journal of Neuroscience 38(28):6379–6387

Yeon J, Shekhar M, Rahnev D. 2020. Overlapping and unique neural circuits are activated during perceptual decision
making and confidence. Scientific Reports 10(1):20761

Yeung N, Summerfield C. 2012. Metacognition in human decision-making: Confidence and error monitoring. Philo-
sophical Transactions of the Royal Society B-Biological Sciences 367(1594):1310–1321

Yu A, Dayan P. 2005. Uncertainty, neuromodulation, and attention. Neuron 46(4):681–692

Zheng Y, Wang D, Ye Q, Zou F, Li Y, Kwok SC. 2021. Diffusion property and functional connectivity of superior
longitudinal fasciculus underpin human metacognition. Neuropsychologia 156:107847

22



Metacognition and confidence: A review and synthesis

Zylberberg A, Barttfeld P, Sigman M. 2012. The construction of confidence in a perceptual decision. Frontiers in
Integrative Neuroscience 6:79

Zylberberg A, Roelfsema PR, Sigman M. 2014. Variance misperception explains illusions of confidence in simple
perceptual decisions. Consciousness and Cognition 27:246–253

23


