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The metacognitive sense of confidence can play a critical role in regulating decision-
making. In particular, a lack of confidence can justify the explicit, potentially costly,
instrumental acquisition of extra information that might resolve the underlying un-
certainty. Recent work has suggested a statistically sophisticated tapestry behind the
information governing both the making and monitoring of choices. Here, we extend
this tapestry to reveal extra richness in the use of confidence for controlling informa-
tion seeking. We thereby highlight how different models of metacognition can gen-
erate diverse relationships between action, confidence, and information search. More
broadly, our work shows how crucial it can be to treat metacognitive monitoring and
control together.

Keywords: Computation, confidence, metacognition, information search, decision
making

After carefully deliberating between Scotland and
the Cote d’Azur, you have decided to spend your next
summer holiday in the north of Britain. You are rather
confident about this choice. Before it comes to book-
ing your train tickets, an article pops up in your feed:
"Skye or Saint-Tropez – the ultimate comparison". Do
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you spend money and time on reading this article? Or
do you purchase the tickets right away? Conflicts like
this are sadly commonplace: Do you read another news
story before heading to the polls? Do you consult a
doctor before heading to the pharmacy? Regardless of
the specific situation, we have to balance accuracy with
(monetary or temporal) cost (Cohen, McClure, & Yu,
2007; Dayan & Daw, 2008). The decision to gather fur-
ther information rather than making the choice based
on our current knowledge thus depends critically on
the initial choice’s expected rectitude, given current in-
formation – which is a form of subjective confidence
(Pouget, Drugowitsch, & Kepecs, 2016).

Computational and cognitive neuroscience has ex-
tensively studied many aspects of such decisions (Got-
tlieb & Oudeyer, 2018; Gottlieb, Oudeyer, Lopes, &
Baranes, 2013; E. Schulz & Gershman, 2019). For in-
stance, a coupling between expected accuracy and in-
formation search is implicit in drift-diffusion mod-
els. There, participants can infer their chance of be-
ing correct from information that accumulates over
time, and have to decide whether to stop or continue
sampling evidence (Gold & Shadlen, 2001, 2007; Rat-
cliff & Rouder, 1998; Wald, 1949). These models have
been highly successful in explaining the latent speed-
accuracy trade-off present in many perceptual tasks
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(Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis,
2010; Ratcliff, Smith, Brown, & McKoon, 2016).

However, humans also enjoy a more sophisticated
and explicit sense of their expected accuracy, in forms
of metacognition (Fleming & Daw, 2017; Shekhar &
Rahnev, 2020; Yeung & Summerfield, 2012). Explicit
metacognition refers to conscious representations of
performance that are available for flexible usage in be-
havioural control or communication to others (Shea et
al., 2014). In turn, these representations can be cou-
pled to richer, normative, approaches to information
search. In this paper, we provide a unified theoretical
treatment of this relationship.

Metacognitive evaluations accompany a wide range
of decisions, from basic judgments of perception and
memory to reflective evaluations of our knowledge
or the "goodness" of subjective choices (De Martino,
Fleming, Garrett, & Dolan, 2013; Fischer, Amelung,
& Said, 2019; Nelson & Narens, 1990; Rahnev et al.,
2020). In turn, recent research has begun to reveal con-
straints on how metacognitive judgments are formed
– both in terms of within-subject decision processes
and between-subject factors (Fleming & Daw, 2017;
Shekhar & Rahnev, 2020; Yeung & Summerfield, 2012).
For example, in perceptual decision-making, human
confidence judgments are influenced both by the un-
certainty of sensory information, and the difficulty of
making a particular discrete choice (Bang & Fleming,
2018; Pouget et al., 2016). Of particular interest are the
processes that contribute to drops in confidence fol-
lowing errors. Such error monitoring can occur even
in the absence of external feedback, and can rely on
a purely internal evaluation mechanism (Boldt & Ye-
ung, 2015; Rabbitt, 1966; Yeung, Botvinick, & Cohen,
2004). Moreover, confidence judgements also differ
substantially between individuals, indicating personal-
level influences on metacognition – a finding with im-
plications for phenomena ranging from psychiatric dis-
orders to political radicalisation (David, Bedford, Wif-
fen, & Gilleen, 2012; Hoven et al., 2019; Rollwage et al.,
2018).

Theories of confidence have duly attempted to ad-
dress these diverse aspects. Suggestions range from
Bayesian accounts in which the same information un-
derlies both decision and confidence (Cartwright &
Festinger, 1943; Kepecs, Uchida, Zariwala, & Mainen,
2008; Sanders, Hangya, & Kepecs, 2016) to the possi-
bility that extra inputs are available for the confidence
rating that, for instance, accrue after or in parallel to
a decision being made (Moran, Teodorescu, & Usher,
2015; Navajas, Bahrami, & Latham, 2016; Pleskac &
Busemeyer, 2010). Broader notions of covariance be-
tween the information underlying both decision and

confidence can capture both these aspects (Fleming &
Daw, 2017; Jang, Wallsten, & Huber, 2012).

Information-seeking behavior is similarly highly
complex and differs substantially between individu-
als. This again has implications, for example for psy-
chiatric symptoms such as paranoia (Ermakova et al.,
2018; Garety & Freeman, 2013; So, Siu, Wong, Chan,
& Garety, 2016), or for patients suffering from obses-
sive compulsive disorder (Baranski & Petrusic, 2001;
Hauser, Moutoussis, Dayan, & Dolan, 2017; Navajas
et al., 2016; Tolin, Abramowitz, Brigidi, & Foa, 2003).
Inter-individual differences in information search are
also linked to real-world attitudes, as is evident in a
relationship between lowered search and dogmatism
(L. Schulz, Rollwage, Dolan, & Fleming, 2020).

Critically, metacognitive judgements are known to
exert a causal influence over the choice to collect more
information. For instance, in a study of perceptual
decision-making, Desender, Boldt, and Yeung (2018)
used a perceptual manipulation to induce different lev-
els of confidence in different conditions, while keep-
ing subjects’ objective performance equal. In the condi-
tion with lower confidence, subjects were more likely to
seek additional information, providing key causal evi-
dence for the role of confidence in the collection of in-
formation. In the memory domain, artificially boosting
people’s confidence when learning word pairs makes
them less likely to choose to study those pairs again,
even though performance remains unchanged (Met-
calfe & Finn, 2008). Other studies also support this
close relationship between confidence and information
search. For example, neural markers of confidence
have been linked to variability in information search
(Desender, Murphy, Boldt, Verguts, & Yeung, 2019) and
different forms of confidence are proposed to influence
the trade off between exploring new options and ex-
ploiting old ones (Boldt, Blundell, & De Martino, 2019;
Wilson, Geana, White, Ludvig, & Cohen, 2014; Wu,
Schulz, Speekenbrink, Nelson, & Meder, 2018).

While a rich literature exists modelling the pro-
cesses supporting explicit confidence formation on
the one hand and information search on the other,
these two phenomena have yet to be related within
a unified framework. Given the close coupling be-
tween metacognitive monitoring and control (Nelson
& Narens, 1990), we here examine the implications of
different theories of confidence for how subjects should
elect to collect more information. We start by introduc-
ing the core components of information seeking at an
abstract level, outlining the intuitions behind the rela-
tionships between action, confidence and information
search. We then zoom in on these computations in
more detail, first discussing different theories of moni-
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Figure 1
Example task and schematic of information available for different actions. (A) A task encapsulating
the information-seeking problem presents a subject with a binary discrimination stimulus (more dots on the left,
d = −1, or right, d = 1) about which it has to take and report a decision aI and express its confidence in this
decision cI . It can then decide whether or not (sI) it wants to see another additional stimulus which it could then
use to make its final decision aF . We can conceptualize these sub-tasks as being made by three different agents
with differing information. The actor makes aI and aF , the rater expresses cI and the seeker decides sI . (B,C)
The information available for these different actions varies between the models: (B) In the postdecisional model,
the actor takes aI based on XI and the rater and seeker have access to this XI and an additional cue YI to rate
the confidence and make the seeking decision. If the seeker decides to seek, the actor additionally receives XF for
the final decision. (C) In the second order model, the rater and seeker merely have access to YI (which can be
correlated with XI) and aI for cI and sI . Across models, the final decision is made based on XI , YI and, depending
on the seeking, XF . (D-E) Example stimulus distributions for d = 1 with example values for XI and YI (and
their sufficient statistic for d, namely ZI) highlighted. Within the distributions, we highlight zones in which the
seeker would decide to seek out further information in grey. In the postdecisional model, this is a function of XI

and YI , and in the second-order model a function of YI , and aI . (F-G) Example postdecisional (F) and second-
order confidences as a function of the relevant cue. Both support error monitoring by allowing confidence to be
lower than 50 %. Note how in the second-order model the action has a boosting influence, for example increasing
confidence above 0.5 for entirely ambiguous values of YI .

toring as delineated by Fleming and Daw (2017) before
considering what kind of downstream consequences
arise in optimal control computations for information
seeking. Finally, we investigate the resulting behav-
ioral predictions.

The Information-Seeking Problem

General overview

Action, confidence, and information seeking can be
investigated in minimal settings such as the bare-bones
perceptual task presented in Figure 1A. There, partici-
pants are presented with a noisy stimulus (two boxes
each with a different number of flickering dots), about
which they have to first make an initial binary decision
(more dots in the left or right box). They then express
their confidence in this decision. Following this, they

can decide whether to (1) see another helpful stimulus
before making a final decision or whether they want
to (2) make this final decision without any additional
evidence. Seeing the second sample is associated with
a cost, and the final (and possibly the initial) decision is
rewarded.

Such a set-up is similar to the controlled environ-
ments previously used to study confidence and infor-
mation seeking (Desender et al., 2018; Desender, Mur-
phy, et al., 2019; L. Schulz et al., 2020). In these tasks,
human subjects have been shown to modulate their
seeking decisions based on their confidence, and also
be sensitive to the cost of the additional information.

For illustrative purposes, we assign the paradigm’s
different subtasks to three notional agents. These
agents have, depending on the underlying confidence
model, access to different information. The actor makes
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the two "objective" decisions (left or right). The rater
expresses its confidence in these decisions (for brevity
we only consider a first confidence rating here). A final
agent, the seeker, is responsible for deciding whether
additional information should be sought out (to im-
prove the final decision of the actor). This terminology
adds the seeker to the description of Fleming and Daw
(2017), and makes it straightforward to specify the in-
formation that is available at each point in time and for
each computation throughout the task. As we shall see,
working with a concrete task forces a set of choices, for
example, that the second choice of the actor can be in-
formed by the confidence report of the rater. These will
turn out to have a substantial impact on the results (for
instance, that the more accurate the rater, the less infor-
mation seeking is required).

In these terms: first, the rater perceives some evi-
dence XI , and then makes a decision, aI ∈ {−1,+1}. The
rater then publicly expresses its confidence, cI ∈ [0, 1]
in this decision, based on the information to which it
has access. This information may or may not include XI

and/or some unique information of its own YI . Third,
the seeker decides whether more information should
be sought (sI ∈ {0, 1}). The actor then makes a final
decision, aF ∈ {−1,+1}. In our simple formulation, aF

can be based on XI along with cI (since the rater’s con-
fidence judgment is veridical and public) and, if extra
information was sought, a further sample, XF . We refer
the reader to Table 1 for an overview of the notation
used throughout.

We now unpack the computations behind these
steps further, first discussing the initial decision and
confidence, as outlined by Fleming and Daw (2017),
before elucidating their consequences for the seeker’s
decision.

Formalising action and metacognitive monitoring

We can frame the decision-making problem as a par-
tially observable Markov decision problem, or POMDP
(Monahan, 1982; Sutton & Barto, 2018). In this, the ac-
tor’s first task is to use its cue XI to infer which of two
states of the world Id (with d ∈ {−1, 1}) it inhabits. These
two states can represent a multitude of stimuli and task
configurations, including more dots in the left (I−1) or
right (I1) box in the task of Figure 1A, but equally any
other binary judgement. The actor’s cue XI only af-
fords partial information about d and is conventionally
thought to be drawn from a normal distribution with
mean d and standard deviation σI .

XI ∼ N(d, σI) (1)

In a task only capturing the first decision, we might
incentivize the initial decision aI with a pay-off of rI

points for correct choices and 0 points for incorrect
choices. In this case, the actor should optimally com-
pare its sensory sample against a threshold. Under
our stimulus and pay-off regime with equal noises and
pay-offs and equally prevalent underlying states, this
threshold is optimally set to 0, implying that:

aI = sgn(XI) (2)

More complex schemes for pay-offs (e.g. more re-
ward for correctly identifying d = 1) or asymmetric
sources will impact this decision rule (Dayan & Daw,
2008), but we will focus on this simple set-up for clar-
ity. In general, the expected performance of the actor is
determined by σI , with higher values associated with
more mistakes, on average (see below for more details).

The rater’s task is now to compute a confidence,
cI , in aI . We assume that the rater follows Bayesian
precepts and reports its belief that aI was the correct
choice, given its information (which we here denote by
C) and the task parameters θ:

cI = P(d = aI |C; θ) (3)

Fleming and Daw (2017) discuss three different
models for the nature of C, the first-order, the post-
decisional and the second-order model. We now re-
capitulate these models before adapting them to the
information-seeking problem. Since the first-order
model is a special case of the postdecisional model, we
discuss them jointly.

Postdecisional and first-order models

In the postdecisional model, the rater knows the ac-
tor’s information XI and action aI . It also receives inde-
pendent postdecisional information, YI (see also Figure
1B). This postdecisional cue YI is sampled from a distri-
bution with the same mean d but with its own standard
deviation τI ,

YI ∼ N(d, τI) (4)

The first-order model is an instance of the postdeci-
sional model in which τI = ∞. In other words, in its
case, the rater has no extra postdecisional information
over and above the rater.

The rater first combines its sample with the actor’s
sample in a precision weighted fashion, leading to a
sufficient statistic ZI which has a standard deviation of
ζI :

ZI =

XI

σ2
I

+ YI

τ2
I

1
σ2

I
+ 1

τ2
I

∼ N(d, ζI) where ζI =

√
1

1
σ2

I
+ 1

τ2
I

(5)
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Table 1
Notation. We distinguish between (A) aspects of the task, (B) random variables, and (C) quantities/actions that the agent
computes

Notation Explanation
A. Experiment
States
Id ∈ {I−1, I1} Initial actual state of the problem
Fd ∈ {F−1, F1} Final state of the problem
d ∈ {−1, 1} Underlying state of the stimulus
Rewards and costs
rI , rF Reward for the initial and final decisions
rS Cost for obtaining the additional stimulus XF

B. Random variables and their attributes
Random variables
XI , XF Actor’s stimuli at Id and Fd

YI Rater’s stimulus at Id (in postdecisional and second-order model)
ZI Combination of XI and YI

ZF Combination of XI , YI and XF

Noise terms associated with random variables
σI , σF Standard deviation of XI and XF

τI Standard deviation of YI

ζI , ζF Standard deviation of ZI and ZF

ρI Correlation between XI and YI

ΣI Covariance matrix for XI and YI with σI , τI and ρI

C. Agent
Actions and expressions
aI , aF ∈ {−1, 1} The actor’s initial and final decisions
cI ∈ [0, 1] The rater’s confidence in the actor’s initial decision
sI ∈ {0, 1} The seeker’s decision whether (1) or not (0) to seek
aF,sI The actor’s final decisions conditioned on the seeking decision
Values and action values
QS (sI) Action values for seeking QS (1) or not seeking QS (0)
V∗F,ZF

Value of having a specific cue ZF at final state F
V∗F,ZI ,sI

Value of having a specific cue ZI at final state F, conditioned on whether agent will seek or not
V∗F,YI ,sI

Value of having a specific cue YI at final state F, conditioned on whether agent will seek or not

The rater’s confidence in the actor’s choice then
comes from the posterior distribution obtained through
Bayes’ rule. Here, the distance between the threshold
and ZI becomes a proxy for the rater’s confidence:

cI = P(d = aI |ZI ; ζI) =
p(ZI |d = aI ; ζI)∑

d p(ZI |d; ζI)
=

1

1 + e−2dZI/ζ
2
I

(6)

An important facet of the postdecisional model is
that ZI and aI can "contradict" each other. In other
words, the rater might have information that favours
one judgement (e.g. ZI = 0.7) while the actor might
have had information that favoured the other (e.g. XI =

−0.2). Such a disagreement will lead the confidence
to be lower than 0.5, triggering what is known as er-
ror monitoring (Boldt & Yeung, 2015; Fleming & Daw,
2017; Yeung & Summerfield, 2012) as we see in Figure
1F.

In the first-order model, with τI = ∞, the actor and
rater have the same information (ZI = XI), but the con-
fidence computations outlined in equation 6 still hold.
As a consequence, the rater will always endorse the
actor’s choice in the first-order model. This, in turn,
prevents it from exhibiting error monitoring. Further-
more, and inconsistent with empirical observations of
dissociations between performance and metacognition
(Rahnev et al., 2020; Shekhar & Rahnev, 2020), it en-
sures the actor and the rater’s accuracy remain cou-
pled, as we will discuss in more detail below. 1

1Our postdecisional model somewhat extends Fleming
and Daw (2017) but is using a formally equivalent architec-
ture. Specifically, whereas Fleming and Daw (2017) only dis-
cuss cases where τI = σI (and thus ζI =

σI√
2
), we allow the

actor and noise to vary independently and describe how the
two can be optimally combined. This additional flexibility
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Second-order Model

In the postdecisional model, the rater is particularly
well endowed with information: it knows exactly what
the actor used to make its decision. This assumption
might not hold under several assumptions, for example
different neural pathways for action and confidence.
Therefore, more general models allow merely for corre-
lation between the information employed by actor and
rater (Fleming & Daw, 2017; Jang et al., 2012). One ex-
ample for such a set-up is Fleming and Daw’s (2017)
second-order model. In it, the rater still receives YI , but it
is denied XI . Rather, it only observes the binary deci-
sion aI (see also Figure 1C). However, in a key contrast
to the postdecisional model, the actor’s and rater’s in-
formation are correlated:[

XI

YI

]
∼ N

(
d
[
1
1

]
,ΣI

)
(7)

ΣI =

[
σ2

I ρIσIτI

ρIσIτI τ2
I

]
(8)

This correlation is visible in Figure 1E and allows the
rater to make partial inferences about the location of
XI . To compute its confidence, the rater thus combines
two actual, and one inferential, source of information
about d: the action aI , its own YI , and the information
provided by these variables about XI via the covariance
between XI and YI , to compute a posterior:

cI = P(d = aI |YI , aI ; ΣI) (9)

This expression involves more complex computa-
tions, including marginalization over possible values
of XI , which we recapitulate and discuss in the ap-
pendix (section A). As with the postdecisional model,
the second-order model also supports error monitor-
ing, and can give rise to different levels of metacogni-
tive insight.

A crucial aspect of the second-order model is that
an agent (here, the rater) has to "[infer] the causes of
its own action" (Fleming & Daw, 2017). This (partial)
decoupling of action and confidence information gives
it more flexibility than the postdecisional model and
makes the action a crucial input to the computation,
in turn boosting confidence for ambiguous YI ’s. This is
visible in Figure 1G, and discussed at length in Fleming
and Daw (2017) 2.

Formalizing the information-seeking problem

After a confidence estimate is formed, the seeker
needs to decide whether the actor should see additional
information before making its final decision aF about
d. To conceptualize this more formally, we extend our

POMDP (Dayan & Daw, 2008; Gottlieb et al., 2013) by
adding a second pair of states Fd that deterministically
follow Id (I−1 → F−1, I1 → F1). If the seeker decides
to seek, the actor receives a second stimulus XF at Fd

which it can use to make its final decision. We again
assume this second cue to be sampled from a normal
distribution with mean d and an associated standard
deviation σF :

XF ∼ N(d, σF) (10)

A final correct decision again comes with a remuner-
ation rF whereas an incorrect choice leads to 0 points.
Finally, and crucially, seeking incurs a cost, rs

3.
Regardless of the metacognitive information config-

urations outlined above, the seeker’s choice involves
the same basic question: Is seeking worth the cost? To
decide, it computes two action-values, QS (sI): one for
seeking QS (1) and one for not seeking QS (0). In short,
these involve predicting how accurate the actor will be
on the final decision, with or without XF . We will next
outline these computations, first explaining the details
in the simpler case of the postdecisional model, and
then highlighting differences in second-order computa-
tions. Across these models, we assume that the seeker
has the same information as the rater, i.e., representing
different sides of the metacognitive coin (monitoring
and control). This will allow us to capture key unique
contributions of confidence to information search over
and above the actor’s objective performance.

To illustrate the computations involved, we follow
recent studies (Desender et al., 2018; L. Schulz et al.,
2020) who provide no reward for the initial decision
(rI = 0). We fix the reward for the final decision at rF = 1
and will show different costs for the additional stimu-
lus rS . Furthermore, we assume a noisier first (σI = 1.5)
than second (σF = 1) stimulus, similarly to L. Schulz et
al. (2020).

Seeking in the postdecisional/first-order case

To compute the two Q-values, we first need to con-
sider how the final decision aF is made at Fd, with and
without XF .

enables us to subsume the first-order model within the post-
decisional model and will be key in our results later when we
we describe different levels of metacognitive insight.

2We note that the specific distributions used for this sim-
ple form of second-order model have some previously unex-
plored peculiarities at various limiting values. Because these
are not essential for our investigations, we discuss them in
the appendix, section B.

3We use this simple pay-off scheme for simplicity, but note
the possibility of others (including temporal discounting).
Furthermore, we assume that the agent has a linear utility
function, which precludes forms of risk-aversion.
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Figure 2
Subcomponents of the information-seeking computation in a first-order/postdecisional model. (A) To
compute the Q-value of not seeking, QS (0) (bold line), the agent computes the max of the two posteriors over
d from ZI , P(d = −1|ZI) and P(d = 1|ZI). (B) If the seeker decides to search, it receives XF which it combines
in a precision-weighted fashion with ZI to form a ZF . Here, we plot the posterior P(d = 1|ZF). Because ZI is
noisier than XF (ζI > σF), the apparent slope of this posterior is not −1. Rather, XF is weighted more than ZI .
The converse posterior P(d = −1|ZI) = 1 − P(d = 1|ZI) is the remaining probability. (C) The seeker computes
the value associated with a given ZF from the maximum of these two possible posteriors. (D) Because it needs
to decide whether to seek or not before receiving XF , the agent needs to predict XF . It does this by summing the
two possible source distributions N(d, σF) weighted by their individual confidence values. (E) To compute the
value for seeking QS (0), the agent averages over the two quantities in C and D, based on its ZI . We here display
the Q-value for not seeking and for seeking overlayed, with the latter shown as a function of the seeking cost
rS . Note how the maximum of the Q-value for seeking QS (0) is defined by this cost. (F) The agent seeks when
seeking is more valuable than not seeking. We here display the difference between the two values, transformed
into confidence space. As confidence increases, the benefit of seeking decreases. Partially adapted from Dayan and
Daw (2008). Parameters set at ζI = σI = 1.5, σF = 1

If the seeker decides to collect no further informa-
tion, the actor’s final decision will be based on the same
information as the rater’s initial confidence. As a re-
sult, the final decision will just repeat its initial decision
aF,0 = aI if ZI and XI agree. If they contradict each other,
the actor will correct what it assumes to be an initial
mistake and change its mind. In confidence space, this
transition occurs at cI = 0.5

To compute the associated action value for not seek-
ing, QI(0), the seeker first computes the optimal ex-
pected value V∗F,ZI ,sI=0 of having a specific ZI at Fd con-
ditioned on its non-seeking behavior. This involves
multiplying the reward obtained through a correct fi-

nal decision with the probability of making a final cor-
rect decision based on ZI (assuming that incorrect deci-
sions incur no cost). In the postdecisional model, this
probability is simply max{cI , 1 − cI}. Figure 2 shows the
sub-components of the postdecisional seeker. For clar-
ity, we there assume that τI = ∞, reducing the prob-
lem to the first-order model. Figure 2A depicts the
posteriors and the associated values. Importantly, this
is the equivalent of the curves for the first-order con-
fidence. Since not seeking costs nothing, the optimal
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8 SCHULZ, FLEMING, DAYAN

action-value for not seeking is just this value:

Q∗S (0) = V∗F,ZI ,0 = max{P(d = −1|ZI), P(d = 1|ZI)}rF

= max{cI , 1 − cI}rF
(11)

In contrast, if the seeker decides to seek, the actor
can use the additional stimulus XF to disambiguate d
further for its final decision aF,1. It does this by first
forming a final combined variable ZF in a precision
weighted fashion equivalent to equation 5:

ZF =

ZI

ζ2
I

+ XF

σ2
F

1
ζ2

I
+ 1

σ2
F

∼ N(d, ζF) where ζF =

√
1

1
ζ2

I
+ 1

σ2
F

(12)
Similarly to the first decision, the actor can then com-

pare ZF against a threshold (again, optimally ZF = 0
given our pay-off regime) to make the final decision.
We plot the posterior associated with this value for
d = −1 in Figure 2B. There, the threshold for aF lies
on where P(d = 1|ZF) = 0.5.

Here, the initial stimulus ZI is noisier than the final
stimulus XF (σI = 1.5 and σF = 1). As a result, XF is
given more weight than ZI in the posterior. For exam-
ple, an XF = 1 will increase the P(d = 1|ZF) posterior
more than an equivalent ZI = 1. Similarly, a less ex-
treme XF will be necessary to overturn a ZI of a different
sign. This is evident in the tilt of the posterior, which is
not fully diagonal but rather slants towards XF .

As for ZI in the no-seeking calculations, we compute
the expected value of a given combination of ZI and
XF from the maximum of the two possible posteriors
(where P(d = −1|ZF) = 1 − P(d = 1|ZF):

V∗F,ZF
= max{P(d = −1|ZF), P(d = 1|ZF)}rF (13)

We plot this value V∗F,ZF
in Figure 2C as a function of

ZI and XF . Again, the slope of the relationship is deter-
mined by the greater contribution to ZF of XF than that
of ZI .

Crucially, however, the seeker has to decide whether
it wants to seek before the actor has seen XF . It therefore
needs to predict this second cue. The resulting distri-
bution p(XF |ZI) is a function of how likely the seeker
believes that the actor is to receive a stimulus from one
of the two means, or a sum of the two possible source
distributions weighted by the rater’s initial confidence
cI (see appendix A). Figure 2D shows this distribution
as function of ZI , a mixture of two Gaussians.

To compute the expected value, V∗F,ZI ,1
, without hav-

ing seen XF , the seeker then integrates over this distri-
bution and the previously defined value function for its
value of ZI given the prospect of seeking. Based on this

mean value the seeker can now work out the action-
value for seeking by considering the cost of the search:

Q∗S (1) = rS + V∗F,ZI ,1

= rS +

∫
XF

p(XF |ZI)V∗F,ZF
dXF

(14)

This value is shown in Figure 2E as a function of ZI

and for different seeking costs rS . It is highest when
the seeker expects the final choice to be likely correct,
that is when it is relatively sure about the identity XF .
With more ambiguous values of ZI , this prediction can
only be made with less certainty. The ceiling of the
seeking value is defined by the cost rS . We plot the
value for not-seeking in Figure 2E. It approaches 0.5 as
ZI becomes less distinctive, and cI therefore becomes
lower. The larger of the two Q-values then determines
the seeking choice:

sI =

1 if QS (1) > QS (0)
0 otherwise.

(15)

For ambiguous values of ZI , seeking is useful and
will likely produce a better final outcome, even when
taking into account the additional cost. When we trans-
form the difference between the two values into con-
fidence space (Figure 2F), we notice that, seeking will
occur in lower confidence ranges, highlighting confi-
dence’s crucial role in guiding the decision to seek.

Seeking in the second-order case

The second-order model entails some additional
subtleties stemming from the different sources of infor-
mation of actor, rater, and seeker. Recall that, in the
second-order model, the rater only observes aI and YI

but does not have full access to the actor’s random vari-
able XI (compare Figure 1C). Similarly, one might as-
sume that the actor does not directly know YI but only
observes the rater’s utterance, cI . However, because the
actor knows its own first action, aI , it can leverage the
knowledge about the rater’s confidence algorithm to
infer the initial confidence variable, YI , underlying cI . It
can then combine this random variable with XI to form
ZI , taking into account the cues’ relative precisions and
their covariance (see appendix A). The reason the actor
can extract YI from cI , but the rater cannot infer XI from
aI . The confidence cI is continuous, whereas the action
aI is discrete.

In the case of no seeking, the actor makes its deci-
sion based on ZI in a similar vein to the postdecisional
model. In contrast to the postdecisional model, such
a change of mind is however not necessarily coupled
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to cI < 0.5 given specific stimulus configurations, be-
cause of the additional information possessed by the
actor at the second stage. Regardless, the value compu-
tations for holding a given ZI are equivalent to the post-
decisional model (we detail this V∗F,ZI

in the appendix
section A). However, the seeker does not know ZI , be-
cause it does not have access to XI . It therefore has to
marginalize out this quantity in a similar manner to the
postdecisional model’s seeking computations:

QS (0)∗ = V∗F,YI ,0 =

∫
ZI

p(ZI |YI , aI)V∗F,ZI
dZI (16)

=

∫
XI

p(XI |YI , aI)V∗F,ZI
dXI (17)

When the seeker decides to seek, the actor receives
XF (again as per equation 10) which it combines with
ZI to form a joint variable ZF (because there is no cor-
relation between XF and ZF this is optimally done in a
manner analogous to the postdecisional model, equa-
tion 12). This final variable ZF can then again be com-
pared against a threshold for aF,1 and is used to com-
pute a value. Similarly to the first-order and postdeci-
sional models, the seeker does not know all the parts
of ZF and has to marginalize over the unknowns. As
before these mean values are then used to compute the
Q-values associated with seeking and not seeking:

Q∗S (1) = rS + V∗F,YI ,1 (18)

= rS +

∫
ZF

p(ZF |YI , aI)V∗F,ZF
dZF (19)

= rS +

∫
XI

∫
XF

p(XI , XF |YI , aI)V∗F,ZF
dXFdXI

(20)

Commonalities and differences between the models’
seeking computations

While their details diverge, the different models still
share some commonalities. Crucially, they all employ
their current confidence to predict the future location
of the second stimulus, XF , which is then combined
with the final value of a stimulus combination to form
the Q-value for seeking. For the postdecisional (and
first-order) model confidence is also a determinant of
the value of not seeking. The second-order model also
uses the confidence to compute the non-seeking value,
albeit by harnessing it to predict the location of XI , sim-
ilarly to the postdecisional seeking value. All this high-
lights the crucial role of metacognition and confidence
in the seeking decision.

Results

In the following, we discuss features of these models
in the information-seeking task. The task allows us to
investigate several behavioral markers of action, con-
fidence, and information search. With regard to the
initial decision, we can observe (1) the average initial
decision performance, (2) the initial confidence, and
(3) an agent’s metacognitive accuracy (their ability to
tell apart correct from incorrect choices through their
confidence). With regards to the information-seeking
decision, we can investigate both (1) the average level
of information search as well as (2) the stopping crite-
rion. Finally, we can observe how accurate an agent
is. Our models predict specific patterns of interactions
between these behavioural markers.

Initial accuracy, average confidence and information
seeking

Good information seeking should be coupled to de-
cision accuracy: The more likely we are to make a
mistake, the more additional information should help
us. Broadly speaking, humans follow this prescription,
seeking more information when they are worse at a
task (Desender et al., 2018; Desender, Murphy, et al.,
2019). Increased accuracy should also go hand in hand
with a rise in average confidence, a corollary also sup-
ported by empirical evidence (Henmon, 1911; Nelson
& Narens, 1990; Rahnev et al., 2020).

To investigate this in the context of our models, we
fix the quality of the second stimulus as well as the cost
for seeking, and investigate an agent’s average confi-
dence and information search. We show these markers
as a function of the initial accuracy which, across all
models, is a function of σI :

P(correct) = φ(σI) =

∫ ∞

0
p(XI |d = 1;σI)dXI (21)

A figure showing this function is displayed in Figure
3A: The lower the actor’s noise σ becomes, the more ac-
curate the objective decision.

Average confidence across models

Across all our models, the average confidence is cor-
rectly calibrated and so tracks the objective accuracy
(Figure 3B). For example, when the actor correctly re-
sponds in 71% of cases, the rater’s average confidence
will also be 71%. As a result, simply measuring av-
erage confidence would allow no inference about the
underlying model. Average confidence is also a coarse
measure because it fails to describe the underlying con-
fidence distribution well, as we will see further below.
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Figure 3
Initial accuracy, average confidence and information search (A) Across models, the accuracy of the agent’s
initial decision is governed by σI through the function φ(σI) (B) In all models, the average initial confidence
matches the average initial accuracy (C,D,E) Average seeking decreases with increasing initial accuracy for all
models. However, the precision of the rater’s stimulus, τI , moderates this relationship differently depending on
the model. (C) In the postdecisional model, lower rater noise leads to less seeking across the accuracy spectrum
because the rater and seeker have more additional information. (D, E) In the second-order model, high rater noise
is associated with reduced seeking at higher levels of initial accuracy. This is because the seeker lacks direct access
to the actor’s actual cue XI and thus has to trust its decision. The correlation between the two (ρI) modulates
this effect (D: ρI = 0.2; E: ρI = 0.5). In the seeking plots, final stimulus noise and cost are fixed at σF = 1
(φ(σF) = 0.84) and rS = −0.1, respectively. The effect of ρI is shown further in section B of the appendix.

Postdecisional and first-order model

Figure 3C shows how the first-order (τI = ∞) and
more general postdecisional models capture the rela-
tionship between accuracy and information seeking:
the lower the initial accuracy, the more likely it is
to seek out information. In fact, average search ap-
proaches an asymptote of 1 below a certain accuracy
for the first-order model given the final stimulus pre-
cision and information cost used here. In other words,
when objective accuracy is low it will almost always be
worthwhile for a first-order agent to seek despite the
cost.

The extra information provided by the postdeci-
sional stimulus YI impacts this average seeking over
and above the average objective accuracy. Specifically,
we see a marked reduction in seeking with lower τI in

comparison to the first-order model. This arises be-
cause the joint noise ζI associated with ZI decreases
as YI becomes more precise, and since, in our model,
aF can be informed by ZI even without extra seeking.
In fact, the optimal cue-combination in equation 5 en-
sures that the joint noise ζI will never be larger than the
smallest of each of the two underlying variances; it will
be smaller than the smaller of the two when the postde-
cisional noise is less than infinite. Consequently, a post-
decisional seeker with τI < ∞ always possesses infor-
mation that is at least as accurate as a first-order seeker
with an equivalent σI . It will thus always seek out less
information than its first-order sibling. The postdeci-
sional noise τI governs the difference between the pair
with more precise postdecisional cues leading to larger
differences.

This joint standard deviation ζI also impacts the
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asymptote: specifically, the average propensity of a
postdecisional agent to seek will never exceed a spe-
cific proportion (for τI < ∞), even when its objective
decision quality remains poor. This, and the gener-
ally lower search even before the asymptote, is par-
tially due to the inherent capability for error monitor-
ing in the postdecisional model: If the agent receives a
postdecisional cue with sufficiently low noise that con-
tradicts its initial cue, then it can infer that its initial
choice was erroneous. When this postdecisional sig-
nal is strong enough to trigger a high error probability,
then the agent can simply change its mind at aF with-
out requiring the additional information. In contrast,
when the actor has made an initially correct choice, a
precise postdecisional stimulus will likely increase the
rater’s confidence. The heightened confidence in turn
will also decrease the need to seek additional informa-
tion. Because the determinant of the average search
is ζI , and this quantity is close to τI when σI is large,
a postdecisional agent’s average information seeking
equals the average information seeking of a first-order
agent whose actor noise σI is equivalent to the postde-
cisional model’s rater noise τI . In other words, when
the actor aI knows almost nothing, the average seeking
behaviour of a postdecisional agent will still resemble
a first-order model whose decision accuracy would be
governed by τI .

Second-order model

The seeking behaviour of the second-order model
differs in key aspects from the postdecisional model
(see Figure 3D;E). While it also, broadly speaking, re-
duces its search with increasing initial accuracy, it ex-
hibits a marked interaction between actor and rater
noise. Specifically, the average seeking curves appear
similar to those of the postdecisonal model when the
initial accuracy of the second-order actor is relatively
low. There, rater/seekers with higher τI cues will seek
more than those with lower τI . Strikingly however,
when the actor is more reliable (the initial accuracy is
higher), second-order agents with higher τI will seek
less than those with more precise rater information.

The peculiar interaction between objective accu-
racy and confidence-noise arises from the second-order
model’s informational set-up: Whereas the postdeci-
sional model makes use of both XI and YI , the second-
order architecture only affords the rater access to a sin-
gle cue, YI , and the actor’s initial decision aI . This
leaves it to make inevitably imperfect inferences about
XI .

When the actor is relatively accurate (e.g. σI = 1)
and the rater’s information relatively inaccurate (e.g.
τI = 3), the rater has little information about the ac-

tor, but knows that the decision is likely correct (be-
cause φ(σI = 1) = .84) – which will even be the case
if the rater has an entirely ambiguous or even some-
what contradictory YI . As a result, its confidence will
remain high, even when YI and aI contradict each other
(see appendix B and Figure 6F). In other words, the
rater will essentially resort to "trusting" the actor’s ac-
tion across a wide range of its own information YI . Be-
cause the seeker is equipped with the same information
as the rater, it will likewise have too little information
to justify the cost of seeking. Consequently, it will ei-
ther fully trust or distrust the actor’s initial decision. In
extreme cases, when τI approaches ∞, the relation be-
tween initial accuracy and average seeking will in fact
resemble a step-function.

Relatedly, there is a marked lack of seeking for high
accuracies in the second-order model when keeping τI

constant. Notice how under the conditions of the cost
of sampling and the accuracy of the second sample in
Figure 3C, the first-order model will still search on up
to a quarter of trials at 90% initial accuracy. In compar-
ison, a second-order agent does not seek at all beyond
that point with any but the most insightful values of τI

(Figure 3D;E). This again comes down to the fact that
the rater and seeker have no alternative but to trust the
actor’s decision when τI � σI . When the objective ac-
curacy is very high (e.g. φ(σI = .8) ≈ 90%) such an
imbalance arises even when the rater noise τI is objec-
tively low.

While these general trends hold across different val-
ues of the correlation ρI (see panels D and E of Figure
3) we still note this parameter’s importance. In general,
ρI shapes both the additional information afforded by
combining XI and YI as well as the confidence rating
process itself. Briefly, one way ρI impacts the informa-
tion seeking is by increasing the step-like nature of the
high τI curves which is visible in the difference between
the ρI = 0.2 and ρI = 0.5 settings we depict. Also some-
what visible in our figures is the fact that with lower
rater noise τI and with low accuracy, information seek-
ing will in fact slightly decrease. Both these aspects
arise from some intricacies in the way signal and noise
trade off in bivariate normal distributions. Because we
focus on the cognitive rather than specifically mathe-
matical implications of our models here, we save the
discussion of these aspects for the appendix (section B).

It is worth noting that all the discussed relationships
between average initial accuracy and average search
also hold for the relationship between average con-
fidence and average search. Consequently, if exper-
imenters were to observe different agents with simi-
lar average confidence but differing underlying confi-
dence architectures, they could expect wildly different
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Figure 4
Information search as a function of cue reliability Across models, average information seeking increases
with less accurate initial decisions (φ(σI)) and more precise final stimuli. To visualize the latter, we plot the
average accuracy φ(σF) that would be expected when encountering XF in isolation. (A) This relationship is most
clearly evident in the first-order model and persists in the postdecisional model (B). However, in the latter, more
precise postdecisional stimuli (lower τI) significantly decrease the (maximum) propensity to seek. (C) A similar
pattern to the postdecisional model is visible in the second-order model, where lower values of rater noise τI also
constrain the maximum average search. The transition from high to low seeking is more abrupt in the second-
order model for high values of rater noise as a result of the rater’s general trust in the actor’s choice (compare
especially the plots with τI = 3 in B and C). Note that the plots in Figure 3 are one-dimensional slices through
the two-dimensional figures presented here. The abrupt declines in the panels in C are equivalent to that shown
in panel E of Figure 3. Plots show a constant cost-level of rS = −0.1, and ρI = 0.5.

levels of average information search.

Cue reliability and information seeking

The decision to seek out additional information
should naturally not only be influenced by the qual-
ity of the stimuli we have encountered, but also by the
quality of the stimuli that we will encounter in the fu-
ture. With regard to the latter, there is room between
two extremes: The second piece of information might
always perfectly disambiguate the judgment (smallσF)
or it might carry almost no information whatsoever
(large σF). While an agent will likely want to almost
always consult the former, it won’t profit much from
the latter.

Postdecisional and first-order model

The first-order and postdecisional model capture
this intuition, as evident in the first-order model de-
picted in Figure 4A. There, we show the average seek-
ing for different levels of accuracy afforded by the ac-
tor’s initial and final stimulus φ(σI) and φ(σF) while
again keeping cost constant at rS = −.1. As before the
agent will seek more as the initial cue becomes noisier
(right to left). In turn, decreasing final cue noise (higher

values of φ(σF); top to bottom) increases the usefulness
of the additional cue and with it the average informa-
tion seeking for a given level of initial actor noise σI .

Figure 4B show different levels of postdecisional
noise. This produces similar patterns to the first-order
model, albeit with some added complexity. The im-
precision τI of the postdecisional cue again has con-
siderable influence on the maximum possible average
seeking behaviour of the postdecisional agent. When
the rater’s cue contains little noise (low τI), almost no
search is necessary. This is regardless of initial and final
stimulus reliability. In turn, the information-seeking
profile begins to again resemble that of a first-order
agent as τI becomes larger.

Second-order model

While second-order search broadly traces the post-
decisional pattern arising from the interplay of the
three noise parameters σI , τI and σF , we can observe
some further intricacies. Specifically, the second-order
model’s seeking does not progress so smoothly from
high to low information seeking with lower σI and
higher σF , especially with high levels of rater noise, τI

(as we have previously observed when only varying
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accuracy). Rather, it begins to resemble more of a step-
function as the rater knows less and less. For example,
compare the highest levels of τI = 3 in panels B and C of
Figure 4. Whereas the postdecisional model smoothly
transitions from high to low search, the second-order
model remains with a high propensity to search rel-
atively long before terminating search more abruptly.
The reason for this can again be found in the limited
information of the rater: When the rater knows little
and the actor surpasses a specific relative uncertainty,
the decision to sample becomes more binary across the
objective accuracy range.

Intermediate summary: Accuracy and search

In the two preceding sections, we demonstrated how
search is governed by the information available to
the seeker and the information expected to be gained
through search. Broadly, the less information the
seeker has and the more it can expect to gain from the
final cue, the more it decides to seek. We highlighted
how this relationship is complicated in a second-order
architecture. There, the seeker doesn’t have full access
to what the actor already knows. When the accura-
cies of the seeker/rater and the actor are particularly
imbalanced, this can give rise to what looks close to
step-functions in the average search profiles. In other
words, the seeker either fully trusts or distrusts the ac-
tor, leading it to seek information almost always or al-
most never.

Search threshold in confidence space

Apart from the average seeking propensity, another
important feature of an agent’s behaviour in our task is
its internal confidence threshold for search. Put differ-
ently, how confident does an agent need to be to decide
it has seen enough information? Our models allow us
to investigate this phenomenon by finding the value of
the rater’s internal variable for which the Q-values for
seeking and not-seeking intersect and computing the
confidence at this point. For a better intuition, com-
pare Figure 2F, where the difference between the two
values are plotted: The threshold is the point where
this difference is 0. Importantly, turning this thresh-
old into a marginalized prediction about how often an
agent seeks information is not completely straightfor-
ward, as will be apparent when we later consider the
underlying confidence distribution in more detail.

Postdecisional and first-order model

In the postdecisional model, this threshold is largely
independent of the initial stimulus statistics model.
Figure 5A demonstrates this by showing the confidence

at which an agent would start seeking across a range
of objective accuracies for the postdecisional case, for a
constant final stimulus noiseσF . This confidence varies
neither as a function of accuracy nor of postdecisional
noise (which we do not display here).

This counterintuitive result arises from the Marko-
vian property of the first-order and postdecisional
models where the confidence cI is equivalent to a be-
lief state summarising all the previous information. In
the Q-value computations, only this belief matters, and
not how it came about. Put differently, it is unimpor-
tant whether cI was based on a large ZI and large ζI or
smaller ZI and smaller ζI .

Rather than the initial stimulus statistics, the deter-
mining factors for the threshold are the cost of the ad-
ditional information and its precision. For intuition,
consider the Q-value functions in Figure 2E (and Fig-
ure 2F). There, the cost alters the intersection between
the two Q-values, with higher cost reducing the space
of ZI in which seeking is worthwhile and thus lower-
ing the threshold. This influence is apparent in panel
A of Figure 5. In turn, smaller σF afford less noisy pre-
dictions of XF in Figure 2D for a given ZI , especially
when this ZI is relatively unambiguous. Consequently,
the Q(sI = 1) curve becomes steeper which leads to the
intersection appearing for lower confidences. The joint
influence of the final cue’s noise and cost are plotted in
Figure 5C. The less expensive and the more precise the
final stimulus is, the higher the boundary.

A subtle difference regarding the lower threshold
appears between the first-order instance of the postde-
cisional model and regular postdecisional models with
τI < ∞. In the first-order version, the minimum confi-
dence is bounded at 50% because the rater has exactly
the same information as the actor. The rater will thus
always endorse its decision. As a result, we only ob-
serve one "moving" boundary in the first-order model
(the upper one). In contrast, when the postdecisional
cue contains information, the lower bound is simply
the opposite of the upper bound. This is because the
net uncertainty of an initial decision made with 45%
confidence is essentially the same as one made with
55%. In turn, if the rater has high confidence that the
actor has made a mistake, then it can safely turn down
the opportunity to acquire additional information: The
actor can change its choice aF without any additional
external information.

Second-order model

Similarly to the postdecisional model, the second-
order model’s thresholds on confidence remain mostly
unimpacted by the initial stimulus statistics, as is visi-
ble in Figure 5 B. There, we show the seeking threshold
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Figure 5
Confidence-seeking thresholds (A,B) The confidence at which an agent stops sampling (confidence threshold)
is largely independent of initial accuracy in the postdecisional and second-order model. Rather, one governing
factor is the cost of the additional stimulus rS . By decreasing the Q−value of seeking (compare Figure 2E and
F), higher costs reduce the space of confidence where it is worth probing. In the second-order model, we can also
see the effect of the transition from seeking into no-seeking where the two confidence thresholds begin moving
together. We set σF = 1 (φ(σF) = 0.84), and for the second order model τI = σI as well as ρ = .5. (C,D)
The two main factors governing the confidence threshold are rS and the noisiness of the final stimulus σF , as is
visible when we plot the upper confidence threshold as a function of the two (C: postdecisional; D: second-order).
Specifically, the more expensive and the less reliable the information becomes, the lower the threshold is set and
the less information is sought given the same initial stimulus statistics. When the agent does not seek at all we
mark the threshold as 50%. Panels C and D use σI = 3 and τI = ∞ for the postdecisional model and σI = τI = 3
and ρI = 0.5 for the second-order model respectively.

for a model whose rater noise τI always equals its actor
noise σI across a range of initial accuracies. Rather, it is
again the cost and noise associated with the additional
stimulus that determine the threshold (see Figure 5B
and D). In fact, given their differences in knowledge,
it is striking that this threshold is largely equivalent
between the postdecisional and second-order models,
at least for low initial accuracy values. Because the
second-order model also produces confidence levels
below 50%, it possesses a lower threshold that mirrors
the upper one, just like the postdecisional model.

As discussed above, the second-order model differ-
entiates itself from the postdecisional model by pro-

ducing behaviour where it does not seek at all. This
allows us to investigate what happens in the transition
to this state of uniform non-seeking. In these cases, as
we can observe that with higher cost levels in Figure
5B, the two confidence cut-offs begin moving closer to-
gether until they end up meeting at 50 %. At this point,
seeking stops. While the baseline threshold for low ini-
tial accuracy is thus unaffected by the initial stimulus
set-up, different σI ’s can produce different initial accu-
racies at which seeking becomes too costly. This thus
affects when the two thresholds begin moving toward
each other.

The influence of the final cue noise σF and the
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seeking cost rs on the confidence cut-off is equiva-
lent between the postdecisional and the second-order
model despite their somewhat different Q-value com-
putations (compare Figure 5C and D). This is because
the second-order’s additional task of predicting the
XI value is required to evaluate the Q-values for and
against seeking. The net effect is that this extra step
does not impact the threshold. The constant threshold
again holds for most of the range of σI and τI . How-
ever, we note that that it can be impacted by these pa-
rameters when nearing the second-order model’s total
reluctance to seek as we discussed above.

Metacognitive accuracy and information search

Metacognitive accuracy broadly describes an agent’s
ability to discriminate its mistakes from its successes.
In our task, this manifests in distinct confidence distri-
butions for correct and incorrect choices: Agents with
high metacognitive accuracy tend to have high confi-
dence ratings when they are correct and low confidence
ratings when they made a mistake.

We can delineate two measures of metacognitive ac-
curacy: metacognitive sensitivity and metacognitive ef-
ficiency (Fleming & Lau, 2014). Metacognitive sensi-
tivity describes the aforementioned separation of confi-
dence distributions, with less overlap between the two
functions a hallmark of high metacognitive sensitivity.
In our framework, this sensitivity is largely governed
by the quality of the rater’s information, τI , with higher
values of τI resulting in lower metacognitive sensitiv-
ity.

While metacognitive sensitivity provides a useful
marker of the quality of an agent’s metacognition, it
is often confounded with objective accuracy. Easier
tasks allow more insight into the quality of our deci-
sions – such that when objective (e.g. perceptual sen-
sitivity) is high, metacognitive sensitivity also tends to
be high (Fleming & Lau, 2014). Metacognitive efficiency
controls for this link between objective and metacog-
nitive sensitivity by normalizing the latter by the for-
mer. This statistic is expressed as a ratio, with values
less than 1 indicating metacognitive hyposensitivity,
where metacognitive sensitivity is worse than would
be expected based on objective performance, and val-
ues greater than 1 indicating metacognitive hypersen-
sitivtiy, in which case metacognitive efficiency is higher
than expected based on objective performance (Flem-
ing & Daw, 2017; Fleming & Lau, 2014).

The fact that the rater has different, possibly addi-
tional, sources of information from the actor is what
licenses varying metacognitive efficiencies. The differ-
ent models operationalize this slightly differently. In
the postdecisional model, metacognitive efficiency can

be expressed through the ratio σI/ζI . The larger this
ratio, the more additional information the postdeci-
sional rater has, and the higher its metacognitive ef-
ficiency. The metacognitive efficiency of the second-
order model is determined by σI/τI (for a constant ρI),
again because of the restricted informational access of
the second-order model. 4

First-order and postdecisional models

To understand better the relationship between seek-
ing and metacognitive accuracy, we first need to reca-
pitulate in detail how metacognitive accuracy arises in
our models. To illustrate this better, we plot distribu-
tions of confidence ratings conditioned on accuracy in
Figure 6 B, C, D and E. These illustrate the overlap be-
tween the distributions of confidence ratings for correct
and incorrect answers.

In the first order model (panels B; τI = ∞), objective
accuracy and metacognitive sensitivity are welded to-
gether. That is, higher objective performance (lowerσI)
results in more clearly distinguishable confidence dis-
tributions and thus increasing metacognitive sensitiv-
ity. By design, the ratioσI/ζI is also always 1 in the first-
order model, pinning down metacognitive efficiency.

In Figure 6B, we demonstrate the relationship be-
tween metacognitive accuracy and search in the first-
order model. We plot the seeking-thresholds we intro-
duced above in black and the zone of confidence values
where the agent seeks in grey. Recall that these are not
influenced by the statistics of the first decision. Because
the confidence distributions shift together for decreas-
ing accuracy, this results in more search. In essence, this
relationship simply recapitulates what we have seen
in the first section on objective accuracy and average
search. Notably sensitivity will appear to be related to
decreased information search in the first-order model,
but this is fully explained by the coupling of metacog-
nitive and objective accuracy. Finally, there is no re-
lation between search and metacognitive efficiency, as
the latter is invariant in the first-order model.

4In the experimental literature, a plethora of measures as-
say metacognitive sensitivity and/or efficiency (Fleming &
Lau, 2014). Most prominently, the meta-d′ statistic (Manis-
calco & Lau, 2012) allows metacognitive sensitivity to be es-
timated within a signal detection theoretic (SDT) framework.
Briefly, this approach estimates the d′ from a first-order SDT
model that best fits the observed confidence distributions.
This parameter, known as meta-d′ can then be compared to
the d′ calculated from the participant’s choices to produce a
ratio meta-d′/d′, a typical measure of metacognitive efficiency
(Fleming & Lau, 2014). Both meta-d′ and meta-d′/d′ scale
with our parameters τI and, depending on the model, the ra-
tio σI/ζI or σI/τI (Fleming & Daw, 2017). However, for clarity
we will focus on our parameter regime in the following.
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Figure 6
Metacognitive sensitivity, efficiency and search (A,D) Seeking as a function of the metacognitive sensitivity.
(A) As the metacognitive efficiency in the postdecisional model (σI/ζI) increases, the need to seek more informa-
tion decreases. (Note that metacognitive hyposensitivity is not possible within the postdecisional model, in which
either the same or additional information is available for the confidence rating as for the decision). (B,C,D,E)
Distributions of confidence ratings after correct and incorrect decisions with areas in which an agent will seek
displayed in grey. (B) In the first-order model (or a postdecisional model with τI = ∞), metacognitive sensitivity
is tied to the objective accuracy (σI) and thus has no independent influence on search. Confidence also has a
lower bound at 50%. (C,D,E) When keeping the objective accuracy (σI) fixed, noise τI associated with the rater’s
additional stimulus can produce diverse confidence distributions in the postdecisional model (C) and second-order
model (E,F). Notice in particular how these models can correct their own mistakes without the need for additional
search when confidence is below 0.5. In contrast to the postdecisional model, the second-order model can produce
metacognitive hypo-sensitivity whenσI/τI < 1. (E) When initial accuracy is high and metacognition particularly
inefficient in the second-order model, the confidence distribution shifts almost entirely out of the seeking-zone.
(F) As a result, metacognitive hypo-sensitivity can prescribe both increasing and decreasing information search
in the second-order model. Metacognitive hypersensitivity is still related to reduced search. For seeking averages
and thresholds all plots use σF = 1 (φ(σF) = 0.84) and rS = −0.1. In the second-order case, ρI = 0.5.

In contrast to the first-order model, the postdeci-
sional model with τI < ∞ can produce different levels
of metacognitive efficiency. Figure 6 C demonstrates
this by keeping the objective accuracy (σI) constant, but
varying the quality of the rater’s information through
τI . In essence, these plots take the first order model
of a given objective accuracy (τI = 2; middle of right

top row of panel B), but give the rater additional in-
formation. The impact of this additional information is
clearly visible: A rater with a low τI and thus highly
accurate postdecisional information is almost perfectly
able to distinguish its correct from incorrect decisions,
as expressed through its confidence. The confidence for
correct decisions will be very high on average whereas
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the confidence for incorrect decisions will almost al-
ways indicate an error, that is be below 0.5. As τI in-
creases, the rater’s additional information decreases,
resulting in a confidence distribution very similar to the
first-order model when noise is very high (leftmost plot
of panel C with τI = 10), albeit one which still allows for
some confidence values that are less than 0.5.

The distributions in Figure 6C also provide insight
into the relationship between metacognitive accuracy
and seeking in the postdecisional model. The highly
separated distributions that result from low τI ’s mean
confidence is pushed outside of the thresholds on both
ends of the confidence range. Mistakes will likely be
accompanied by a strong error signal (very low confi-
dence) that enables a change of mind without the need
for additional information seeking. In turn, correct de-
cisions will likely trigger confidences so high that no
information seeking is deemed necessary either.

We can further investigate the relationship between
objective accuracy, metacognitive efficiency and search
by quantifying metacognitive efficiency in the post-
decisional model as the ratio σI/ζI . Importantly, the
ratio is always equal to or greater than 1, because
the postdecisional stimulus set-up only allows for ad-
ditional knowledge (metacognitive hyper-sensitivity)
but not for reduced knowledge (metacognitive hypo-
sensitivity). Figure 6 A illustrates the effect of this hy-
persensitivity on search. We again observe a main ef-
fect of decision accuracy as governed by σI (differently
shaded lines), but can now see the additional effect of
metacognitive efficiency: Higher levels of metacogni-
tive efficiency give rise to reduced search on average.

Second-order model

The rather diverse confidence distributions pro-
duced by the second-order model are visible in pan-
els E-F of Figure 6. In E, we again hold the objective
accuracy at σI = 2, but vary τI . The rater noise impor-
tantly plays a different role in the second-order model,
because the rater does not have direct access to the ac-
tor’s cue XI . We again see how low values of τI give
rise to clearly distinct confidence distributions and in-
crease the chance of successful error monitoring. How-
ever, in addition the second-order model also allows
for metacognitive hypo-sensitivity, when τI > σI . In
these cases, the rater has less information than the ac-
tor. The consequences of this are visible when compar-
ing the first-order plot with σI = 2 plots in panel B to
the second-order plot with σI = 2 and τI = 3 in panel
D: The second order model’s two distributions are less
distinguishable than the first-order model because of
the hyposensitivity produced by τI > σI .

In general, the relationship between metacognitive

accuracy and seeking holds in the second-order model.
The increased levels of metacognitive insight resulting
from lower values of τI push the confidence distribu-
tions out of the zone defined by the aforementioned
seeking threshold. This results in lowered search. Con-
sequently, the effects of metacognitive hypersensitivity
on seeking in the second-order model are comparable
to those in the postdecisional model (see Figure 6F) –
when keeping objective accuracy constant, higher ef-
ficiency again results in less need for additional infor-
mation. The trend continues into metacognitive hypo-
sensitivity. However, striking non-linear effects appear.
These are again triggered by the specific knowledge
states of the second-order actor and rater: Recall that if
the actor is very accurate, and the rater has less knowl-
edge, the agent’s confidence will begin to be relatively
constant. In essence, the rater will begin to always trust
the actor. This is visible in the leftmost plot in panel F,
where σI = 1 and τI = 2. Here, the rater will know
significantly less than the actor. The confidence ratings
will thus closely congregate around the actor’s average
accuracy, φ(σI) = .84, which represents the rater’s best
guess given its limited knowledge. This in turn will
lead to most of the confidence ratings to be above the
confidence threshold and reduce the average informa-
tion seeking in comparison to a rater with more infor-
mation. This effect of higher metacognitive efficiency is
particularly visible in the panel E of figure 6: With the
higher metacognitive efficiency of τI = 1.3 compared to
τI = 2, there is more confidence mass within the seek-
ing interval.

In summary, this means that search can be reduced
in the second order model through two distinct mech-
anisms. When a second-order agent becomes more
metacognitively hypersensitive, it will seek less be-
cause it has more information. However, counterintu-
itively, a second-order agent might also seek less when
it is metacognitively hyposensitive, but this time be-
cause it has less, or to be more precise too little, infor-
mation.

Intermediate summary: Confidence and search

In the preceding two sections, we discussed the in-
tricate relationships between confidence and search.
In both models, the threshold of confidence at which
search is triggered is largely independent of the initial
stimulus characteristics due to its (quasi-)Markovian
property. Rather, the zone in confidence space where
seeking is adequate is governed by the cost and preci-
sion of the additional information that can be sought
out.

The confidence thresholds are however crucial
when considering the confidence distributions that fall
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Final accuracy conditioned on search (A) Values of ZI that get passed on to the final accuracy with (red) and
without seeking (blue) in the postdecisional model. When seeking, the ZI values tend to be ambiguous whereas
when the agent decides against search, the values tend to be more extreme and therefore offer better accuracy. (B)
As a result, in the postdecisional model, the final accuracy with seeking (red) is independent of the initial stimulus.
The final accuracy without seeking (blue to purple) is governed by both the accuracy afforded through the initial
decision as well as the extra information contained in the postdecisional cue YI . (C, D) Because the seeking
decision is made without consideration of the action variable XI , the final accuracy differs in the second-order
model. The final accuracy after seeking receives a boost through unambiguous values of XI that slip through.
This fact also lets the final accuracy without seeking remain relatively stable until the agent doesn’t seek any
information at all, at which point it becomes a function of the initial accuracy. B - D fix final stimulus noise and
cost at (φ(σF = 1) = 0.84)) and rS = −0.1.

within, or outside them. In both the postdecisional and
the second-order models, metacognitive hypersensiv-
ity shifts confidence outside of the seeking zone, reduc-
ing search. In the second-order model, hypo-sensitivity
can trigger both increased and decreased search by ei-
ther shifting more confidence into, or above the seeking
zone.

Final accuracy

The accuracy of its ultimate, overall judgement, aF ,
constitutes a last crucial aspect of of an agent’s be-
haviour in our task. This final accuracy of course de-
pends on the decision of the seeker – but in a poten-
tially complex manner, because the seeker’s decision-
making in turn is partially a function of its estimates of

the benefits for this final accuracy of further search. We
show these relationships in Figure 7.

We distinguish between two kinds of final accuracy:
The final accuracy when the agent decided not to seek
additional information, and the final accuracy when
the agent decided to do so. For brevity, we will in the
following refer to these as the without-search accuracy
and the with-search accuracy.

Postdecisional and first-order model

To understand how the final accuracy comes about,
we need to consider what kind of cues are available to
the actor at the final time point (see Figure 7A). Recall
that in the postdecisional model, seeking is a function
of ZI : Ambiguous values of ZI (e.g. ZI = 0) will give rise
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to seeking, whereas extreme values of ZI (e.g. ZI = 3)
will already come with enough confidence to make in-
formation search unnecessary. Thus, as seen in Figure
7A, with-search final decisions will be made with am-
biguous, more intermediate, values of ZI . In contrast,
without-search final decisions will only be based on
more extreme values.

This division of the ZI clearly impacts the final ac-
curacy: In the without-search case, accuracy will be
higher than would be expected when making a deci-
sion on the entire ZI space (φ(ζI)). This increase is trig-
gered because the error-prone, intermediate ZI values
are excluded (by the fact of seeking). In contrast, in
the with-search case, the actor will have relatively poor
information before receiving XF due to the ambiguity
associated with these intermediate values. The results
of this division are visible in Figure 7C where we show
the two final accuracies as a function of the initial accu-
racy and the rater noise τI .

Let us first inspect the with-search accuracy, pic-
tured in red. Strikingly, this is not influenced by ei-
ther the initial accuracy or τI . The reasons for this lie
in the aforementioned stimulus set-up and relate to the
confidence threshold: Because the agent only has rela-
tively ambiguous values ZI before it receives XF , it will
not have a strong preference for either option prior to
search. This in turn means that the accuracy of the fi-
nal stimulus σF is the crucial determinant of the with-
search accuracy. For example, in Figure 7B, σF would
afford an accuracy of around 84 % (φ(σF) = 0.84), and
the without-search accuracy is only marginally higher.
This slight boost over the accuracy afforded by a soli-
tary XF is in fact governed by the cost, which if lower,
increases the range of ZI ’s passed onto to seeking and
therefore decreases the quality of information prior to
the receipt of XF .

In contrast, the relationship between initial accuracy
and final without-search accuracy (plotted in blue) is
linear – at least in the first order model. That is the
without-search accuracy is as accurate as the initial ac-
curacy plus an additional boost. This again results
from the ZI ’s available which tend to be less ambigu-
ous when the agent does not seek. Introducing addi-
tional information through τI < ∞ strongly modulates
the without-search accuracy. This is again the case be-
cause in these cases, the agent makes its decision not
based on a stimulus with σI but on a combined stim-
ulus with ζI which will always be more precise than
σI . Low noise in the postdecisional information will
thus considerably boost the final accuracy through the
aforementioned capability for error monitoring.

Curiously, the model sometimes produces a be-
haviour where it makes worse decisions with addi-

tional information than without it. At first, this can ap-
pear implausible: information should serve to increase
performance. However, the agent of course has to bal-
ance the gained accuracy with its cost, triggering it to
seek out information only when it is more likely to have
made a poor decision.

Second-order model

The limited informational access of the second-order
model becomes especially crucial when investigating
its final accuracy. Recall that the postdecisional seeker
has access to XI , and so already fully knows the quality
of the final decision if it were not to seek. In contrast,
the second-order seeker is less well informed. It only
has access to the rater variable YI and can make noisy
inferences about the actor variable XI based on the ac-
tor’s decision. The seeker thus lacks the perfect insight
afforded by the postdecisional model. As a result, seek-
ing is only a function of YI in the second-order model
rather than the full ZI in the postdecisional model (com-
pare Figure 1, panels D and E). As a result, the stimu-
lus space is not, as in the postdecisional model, divided
along the crucial variable for the without-search accu-
racy (ZI), but only along part of it, YI .

The key problem for the second-order seeker result-
ing from its limited access to XI is that potentially un-
ambiguous ZI values can slip under its radar. As an ex-
ample, picture the extreme case when the rater obtains
a relatively ambiguous cue (YI = 0.3). Under most pa-
rameter combinations, this will result in low confidence
and trigger the agent to seek. We can broadly think
about two possible cases based on this: In one case, the
actor itself might have received an ambiguous cue (e.g.
XI = 0.1). In this case, in the counterfactual scenario
where the agent would not have searched, its final de-
cision would have been based on a rather ambiguous
ZI . Here, seeking would have been a good decision. In
another case, the actor might in fact have observed a
very distinct cue (XI = 3). In this case, the actor would
have already had a rather unambiguous cue ZI for a fi-
nal decision in the counterfactual non-seeking scenario.
Here, seeking wouldn’t be of much benefit. Whereas
the postdecisional agent would know this and thus not
seek, the second-order rater has no access to XI and will
thus sometimes sample even though it might not have
been necessary.

This divergent knowledge results in a different pat-
tern for the with-search accuracy, with influences for
both σI and τI . The less relative insight the seeker has
(higher τI) the more the XI "leakage", which is visible in
panel C of Figure 7. Recall there that a constant level of
τI results in decreasing metacognitive efficiency when
increasing the objective accuracy. As a result, more ZI ’s

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.01.433342doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433342
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 SCHULZ, FLEMING, DAYAN

which would lead to no seeking on the part of a postde-
cisional agent with full insight are assigned to seeking
by the second-order model. This "unnecessary" seek-
ing increases the with-search accuracy until the highly
metacognitively inefficient agent stops seeking entirely,
as was visible in the average seeking figures (Figures 3
D & E).

The XI leakage inherent in the second-order model’s
seeking computations also affects the without-search fi-
nal accuracy, but to its disadvantage. Specifically, the
unnecessarily good values of XI included through the
myopic seeking are now no longer available to the ac-
tor when the final decision is made without search. The
final accuracy thus does not increase with increasing
initial accuracy while the agent still seeks (again, com-
pare Figure 3). In fact, under certain stimulus configu-
rations, the without-search accuracy can even slightly
decrease as a result of the good XI being "stolen" by
the seeking. It also worth noting that the amount of
additional decision information afforded by XI also de-
creases with heightened correlation ρ reducing the ad-
ditional information available. 5

The without-search final accuracy begins to fall into
a linear relationship with the initial accuracy once the
agent entirely stops seeking. It is then simply a function
of ζI (φ(ζI); by contrast with the postdecisional model
where it is greater than φ(ζI). Before then, the baseline
without-search accuracy is governed by τI , again as a
result of the increasing capability for error monitoring
that comes along with increasing metacognitive sensi-
tivity. The ignition point of this increase is governed
by the baseline rater noise τI which impacts when the
seeker will stop seeking entirely.

As before, the main patterns remain intact when al-
tering ρI in the second-order model (compare panels
C and D). However, some additional subtleties arise
which we will show in the appendix (section B). Briefly,
it is worth noting that the XI leakage is higher for the
increased ρI because in this case more information is
sought and the average seeking curve resembles more
of a step-function.

Discussion

Computational models of metacognition have re-
cently been highly successful in explaining many intri-
cate facets of human confidence, including error mon-
itoring and varying degrees of metacognitive sensi-
tivity (Fleming & Daw, 2017; Rahnev et al., 2020; Ye-
ung & Summerfield, 2012). However, it has long been
noted that metacognitive monitoring exists to guide
subsequent control of behaviour (Nelson & Narens,
1990), such as knowing when to invest time and ef-
fort in studying new material or seeking new informa-

tion (Desender et al., 2018; Goupil, Romand-Monnier,
& Kouider, 2016; Metcalfe & Finn, 2008; L. Schulz
et al., 2020). How these two processes of monitor-
ing and control interface has attracted less attention
from computational modelers. Here, we considered
the rather diverse consequences that different assump-
tions about the informational structure underlying con-
fidence have for optimal search. We did so by treating
the process of remunerated inference and costly infor-
mation acquisition in the face of uncertainty as a sim-
ple instance of a partially observable Markov decision
problem (POMDP).

We extended two different model architectures sug-
gested by Fleming and Daw (2017), exploiting the ex-
tremely simplified version of drift diffusion-like de-
cision making discussed by Dayan and Daw (2008).
In the postdecisional models, the rating process that
generates confidence judgements has access to at least
the information underlying the original decision whose
confidence it judges, as well as in most cases additional
information (Moran et al., 2015; Navajas et al., 2016;
Pleskac & Busemeyer, 2010). By contrast, in the second-
order model, rater and actor share only part of each
other’s information, quantified by a degree of correla-
tion (Fleming & Daw, 2017; Jang et al., 2012). In our ex-
tension, this confidence is used to determine whether
the agent should, depending on the expense of doing
so, collect more information before gaining reward for
a final choice.

Our results highlight how only seemingly small
changes in the assumed informational architecture of
acting, rating and seeking can lead to starkly different
profiles of optimal search. The second-order model in
particular contains a number of non-trivial and often
non-linear relationships between action, confidence,
and optimal information search. For example, the av-
erage willingness to search as a function of objective
accuracy can resemble a step-function for some param-
eter values in this model. In addition, because of the
specific distributions of confidence associated with the
second-order models, metacognitive hypo-sensitivity
can give rise to both increased or decreased informa-
tion search, depending on the underlying objective ac-
curacy.

In fact, even the basic confidence judgements pro-
duced by the second-order model can have counter-
intuitive characteristics in certain regimes – such as
that the more the rater’s private information contradicts
the actor’s choice, the more confident the rater can be
that the actor’s decision was in fact correct. We mainly

5How ζI stands in relationship with ρI , σI and τI is in fact
more complex under certain more extreme parameter combi-
nations, as we discuss in further detail in the appendix B.
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focused on regimes in which predictions are less un-
usual, in keeping with the likely psychological unreal-
ity of these extremes. However, we point the interested
reader to the fuller picture in appendix (section B).

Locating other monitoring accounts relative to the
Fleming and Daw (2017) versions of the postdecisional
and second-order models requires a careful look at
their respective informational architectures. Perhaps
the most significant family which is at least subtly dif-
ferent includes those models that assume that evidence
accumulates continually (Moran et al., 2015; Pleskac &
Busemeyer, 2010; Resulaj, Kiani, Wolpert, & Shadlen,
2009; van den Berg, Zylberberg, Kiani, Shadlen, &
Wolpert, 2016). These relate to our models in two struc-
turally different ways. For an example of the first, con-
sider what Pleskac and Busemeyer (2010) call a two-
stage model. Superficially, this looks like our postde-
cisional model: the actor makes its decision based on
one source of information XI , and the rater bases its
confidence on a ZI which is XI plus some additional, in-
dependent, information YI (whose precision is usually
governed by the time that passes between the action
and confidence). However, in Pleskac and Busemeyer
(2010), the actor uses an algorithm based on diffusion-
to-bound, and so XI is perfectly predicted by aI . Con-
sequently, whereas our XI can be accompanied by dif-
ferent degrees of (first-order) certainty, the accumula-
tion bound fixes this certainty. As a result, the rater can
use the actor’s decision as a sufficient statistic for the
rater’s random variable, and will know (as a function
of the bounds) how accurate this decision is on aver-
age. In turn, this informational set-up for the rater is an
instance of what we would call a second-order model
with ρI = 0. There, the rater also only knows the av-
erage accuracy of the actor, and receives uncorrelated
evidence which it combines with aI to to form its confi-
dence. The second structural relationship is to note that
the action threshold in dynamical diffusion-style mod-
els already implements an implicit case of the optional
information seeking that we study explicitly – allow-
ing more information to be collected (typically at the
expense of time) given insufficient confidence.

Finally, we did not focus on the potential neural real-
ization of the seeker, and its interaction with the likely
regions involved in acting and rating (Fleming, Put-
ten, & Daw, 2018; Shimamura & Squire, 1986; Vaccaro
& Fleming, 2018) as well as the neuromodulators in-
volved in information search and the representation
of uncertainty (Hauser, Moutoussis, Purg, Dayan, &
Dolan, 2018; Vellani, de Vries, Gaule, & Sharot, 2020; Yu
& Dayan, 2005). It would be most interesting to probe
the most obvious substrates, such as those regions in-
volved in model-based and goal-directed control (Daw,

Niv, & Dayan, 2005; Dickinson & Balleine, 2002) or state
inference (Behrens et al., 2018; Schuck, Cai, Wilson, &
Niv, 2016), using signatures derived from behaviour as
potential correlates of neural activity.

Informational flow and access

Our extensions to the postdecisional and second-
order model make particular choices about how infor-
mation flows after the confidence rating. That is, how
is the new information XF , if collected by the actor, in-
tegrated with the actor’s (XI) and rater’s (YI) original
information to make the final choice (aF)?

In our formulation of the postdecisional model, the
perfectly accumulating sequential sampling renders
unreasonable anything short of the full integration of
the three samples (XI ,YI , XF). The optimal computa-
tions would naturally be altered if the accumulation
were lossy or affected by noise, or the rater had less
knowledge about the actor.

In contrast to the full access afforded by our postde-
cisional account, in the second-order model, the initial
actor and rater are more separate. This in turn leaves
various credible possibilities for their subsequent inte-
gration. We endowed the final actor with the substan-
tial inferential ability of calculating the rater’s variable
YI from the reported confidence. However, especially if
the rater is not required to report this information pub-
licly, this may not be possible. If the information about
YI available to the final actor is less than we assume
here, then the computations for search would differ, for
instance limiting the benefit of low rater noise τI .

A related question is whether and how information
is further propagated in the second-order model. Here,
we stopped at the final action, but the rater could, of
course, also compute its confidence in this second deci-
sion. For brevity, we have not included this here, but
note how an optimal rater would now need to infer
both the actor’s first and second cue based on the dy-
namics of the first and second decision. Even in the
case of no search, the rater could, in some cases, receive
additional information about the actor’s first cue by ob-
serving how the actor reacts to the rater’s initial confi-
dence (for example whether the actor changes its mind
after an error signal by the rater). This raises broader
issues about an internal recursive back- and forth in-
ference between the actor and rater. Given suggestions
that the two may operate below and above the thresh-
old of awareness respectively, there may ultimately be
even broader implications (Dehaene, Lau, & Kouider,
2017).

In contrast to humans, other animals’ metacogni-
tion cannot be directly assayed with confidence rat-
ings. Experimentalists have attempted to remedy this
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through paradigms that indirectly probe representa-
tions of subjective correctness, such as post-decision
wagering (Kepecs & Mainen, 2012), opt-out experi-
ments (Hampton, 2001) or neural markers (Kepecs et
al., 2008; Kiani & Shadlen, 2009; Nieder, Wagener, &
Rinnert, 2020). Information-seeking tasks have also
seen wide use (Call, 2010; Call & Carpenter, 2001).
There, an animal is hypothesized to possess a form
of metacognition if it seeks information in situations
of uncertainty (which the experimenter controls), a be-
havior that already develops in human infancy (Goupil
et al., 2016). However, there is ambiguity about
whether confidence-related behaviours and informa-
tion search in animals reflect a capacity for explicit
metacognition – the ability to form a distinct repre-
sentation of confidence about one’s knowledge or per-
formance (Birch, Schnell, & Clayton, 2020; Carruthers,
2008; Kornell, 2014). To the extent that second-order ar-
chitectures map onto a richer capacity for creating and
using explicit confidence representations, our compu-
tational models could allow inferences about the va-
rieties of animal metacognition when applied to the
kinds of tasks used in this domain.

Ambiguity, computational noise, uncertainty and
normativity

Following Fleming and Daw (2017), the agents in
our POMDP have primary uncertainty about the stim-
ulus on a trial, but suffer no ambiguity (or secondary
uncertainty) about the inaccuracy or correlation of
their sources of information. They also make their
choices and confidence ratings in a computationally
perfect manner, and are aware of their own metacog-
nitive competence. They employ no form of temporal-
discounting and are risk neutral. It would be for-
mally straightforward to weaken these assumptions,
various of which have been shown to influence search
(Gigerenzer & Garcia-Retamero, 2017; Sadeghiyeh et
al., 2020).

The case in which subjects receive information
whose accuracy they are uncertain about is common
in dynamic decision-making problems where, for in-
stance, the contrast of input stimuli may change in
an unsignalled manner between trials (Fleming et al.,
2018; Gold & Shadlen, 2001, 2007; Kiani & Shadlen,
2009). There has been work on this in the equivalent
of the first-order case. For instance, the conventional
reward-rate maximizing strategy for the drift diffusion
decision-making model in which evidence accumulates
up to a fixed threshold changes to one in which there
is what is known as an urgency function (O’Connell,
Shadlen, Wong-Lin, & Kelly, 2018; Ratcliff et al., 2016)
so that if the agent discovers from the length of time

it is taking to reach the threshold that the informa-
tion they are receiving is not very accurate, then it
can make a quick, potentially inaccurate, decision, and
hope that the next problem will be easier (Drugowitsch,
Moreno-Bote, Churchland, Shadlen, & Pouget, 2012).
It would be possible to extend our models in a simi-
lar manner, allowing separate informational accumu-
lations over time for actor and rater; with the seeker
judging when to stop and allow the actor to perform.
The added complexity would be that the explicit com-
munication between actor and rater that we allowed
(with the actor’s first action aI observed by the rater;
and the rater’s confidence report cI being observed by
the second actor) would have to be adjusted.

Our models focused on noise coming from the sig-
nals themselves, and so we assumed an entirely noise-
free decision and confidence processes. This allowed us
to pinpoint the influences of our different confidence
models on search. However, it is of course also limit-
ing. Decision noise is ubiquitous in behaviour (Mueller
& Weidemann, 2008; Wilson et al., 2014), and noisy
computations offer a different lens for understand-
ing metacognitive inefficiencies (Shekhar & Rahnev,
2020) and exploration (Findling, Skvortsova, Drom-
nelle, Palminteri, & Wyart, 2019). In our task, consider
an agent which would have the opportunity to collect
very accurate information, but has difficulty translating
this information to good actions (for example through
a low softmax-temperature or high trembling hand pa-
rameter). The introduction of such noise might also
happen before the action is taken itself, for example by
forgetting that degrades information over time, lossy
accumulation of evidence or through noisy computa-
tions. Agents that know about their own inaccura-
cies should issue confidence judgements and seeking
decisions that take them into account. For instance,
Moutoussis, Bentall, El-Deredy, and Dayan (2011) hy-
pothesized that people with paranoia appear to "jump
to conclusions" by refusing to gather information, be-
cause decision noise renders such collection futile (al-
though see Ermakova et al., 2018).

A more complicated problem arises if agents are con-
fused about, or even not fully aware of, their own
metacognitive skill. We assumed a form of meta-
metacognitive perfection. However, this is itself ques-
tionable – and issues about how agents tune this capac-
ity, and its psychological and neural realizations have
yet to be thoroughly examined. For example, agents
might exist that are metacognitively highly accurate,
but might be unaware of this skill, or have low confi-
dence in it. Conversely, individuals might posses little
metacognitive skill, but could consider themselves to
be great raters, in essence a meta-Dunning-Kruger ef-
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fect (Kruger & Dunning, 1999). If agents do not know
whether they can trust their own confidence, this natu-
rally also has implications for our information-seeking
problem, and metacognitive control more broadly.

Valence and motivational effects impact information
search over and above the purely instrumental and
accuracy-focused seeking we discuss. Prominently, hu-
mans are more likely to look for information that has
positive valence (Gesiarz, Cahill, & Sharot, 2019; Hart
et al., 2009; Jonas, Schulz-Hardt, Frey, & Thelen, 2001;
Sharot & Sunstein, 2020). In turn, we tend to be re-
luctant to seek information that might have negative
valence, but might in fact be instrumentally useful -
like the results of a medical test (Gigerenzer & Garcia-
Retamero, 2017; Thornton, 2008). Our models do not
accommodate these aspects at the moment. However,
one might combine our purely instrumental values
with internal values for certain beliefs – which may or
may not be in line with the accuracy goals we specify
(Bromberg-Martin & Sharot, 2020).

Even when there is no valence attached to the be-
liefs, empirical work in paradigms close to the one
we use here suggest that humans integrate cues that
favour an initial judgement more than those that dis-
confirm it, especially when confidence is high (Roll-
wage et al., 2020). Such a confirmation bias can be
straightforwardly modelled within our framework and
might might assist in explaining behaviour (Fleming et
al., 2018). Recent simulation work (Rollwage & Flem-
ing, 2021) has shown that this an apparent confidence-
induced confirmation bias can in fact be adaptive when
an agent posseses second-order metacognitive hyper-
sensitivity. Notably, Rollwage and Fleming (2021)
used a different information flow for the final decision.
However, this still raises interesting questions about
what constitutes optimality in both the passive and ac-
tive sampling of information.

Also weakening the tie to normativity are recent
empirical findings that human confidence based on
choices with more than two options does not neces-
sarily resemble the full Bayesian posterior, but rather
tracks the difference between the two most likely op-
tions (Li & Ma, 2020). This has interesting implications
for more complex choices, and it will be important to
consider how search manifests in these settings. No-
tably, our model already has quite a number of param-
eters and it is unclear whether all these cognitive pro-
cesses might be distinguishable in behaviour (Wilson &
Collins, 2019). Targeted experimental manipulations of
these factors might thus provide better insights.

Transcranial magnetic stimulation (TMS) (Fleming et
al., 2015; Rounis, Maniscalco, Rothwell, Passingham, &
Lau, 2010; Shekhar & Rahnev, 2018) or pharmacologi-

cal manipulations (Clos, Bunzeck, & Sommer, 2019) are
able to create dissociable effects on action and confi-
dence. Metacognition can also be trained (Carpenter
et al., 2019) and there are task conditions which selec-
tively impact action and monitoring (Bona & Silvanto,
2014; Desender et al., 2018; Graziano & Sigman, 2009;
Spence, Dux, & Arnold, 2016; Vlassova, Donkin, &
Pearson, 2014). Investigating how search would man-
ifest following such manipulations might provide key
insights into the interplay of metacognitive monitoring
and control and their underlying computations.

Some neurological (Del Cul, Dehaene, Reyes, Bravo,
& Slachevsky, 2009; Fleming, Ryu, Golfinos, & Black-
mon, 2014; Goldstein et al., 2009; Persaud, McLeod, &
Cowey, 2007; Shimamura & Squire, 1986) and psycho-
logical disorders (David et al., 2012; Hoven et al., 2019;
Rouault, Seow, Gillan, & Fleming, 2018) as well as ag-
ing (Palmer, David, & Fleming, 2014; Weil et al., 2013)
specifically affect an individual’s metacognition but
leave their "object-level" abilities relatively untouched.
These would have implications for information search.
For instance, agents might over- or under-estimate the
usefulness of the second cue or have higher thresholds
for stopping to seek, or keep on returning to check that
some action (such as turning off a gas stove) has been
completed (Hauser et al., 2017; Tolin et al., 2003).

Experimental manipulations of or individual differ-
ences in metacognition might provide one way to dis-
entangle postdecisional from second-order computa-
tions in actual behaviour. However, there are other spe-
cific aspects of second-order computations that warrant
further investigation. Most prominently, computing
second-order confidence relies on observing the actor’s
decision (Fleming & Daw, 2017) and its insight is cur-
tailed when it can not do so, a corollary also supported
by empirical evidence (Pereira et al., 2020; Siedlecka,
Paulewicz, & Wierzchoń, 2016). Future experiments
could follow up on this by varying whether partici-
pants make an initial decision. When participants only
rate their confidence but do not perform an action, this
should lead to reduced metacognitive insight, and the
optimal seeking computations would be more akin to
a first-order model. It would be especially interesting
whether such conditions could give rise to the step-like
average seeking curves when varying the underlying
object-level accuracy.

Links to other types of information search and
metacognitive control

Here we addressed a very restricted information-
seeking problem. In other laboratory tasks or in
real world situations, information seeking is itself
often embedded in more complex decision-making
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tasks (Mobbs, Trimmer, Blumstein, & Dayan, 2018;
E. Schulz et al., 2019). For example, in reinforcement
learning problems with several options of unknown
value, agents face an exploration-exploitation dilemma
(E. Schulz & Gershman, 2019; Sutton & Barto, 2018).
The essence of this dilemma is deciding whether to pick
the option currently thought to be most valuable (ex-
ploit), or to sample from another option which might
end up being better (explore). Similar to our problem,
this also requires agents to balance the acquisition of
information with some (opportunity) cost.

Theoretical treatments of (optimal) exploration (Git-
tins, 1979; Schwartenbeck et al., 2019; Sutton & Barto,
2018) and empirical investigations (Boldt et al., 2019;
Speekenbrink & Konstantinidis, 2015; Wilson et al.,
2014; Wu et al., 2018) of human exploration also high-
light the key role of uncertainty in this decision prob-
lem. For example, the widely used Upper Confidence
Bound exploration strategy (Sutton & Barto, 2018)
drives agents to choose options about which they are
more uncertain. These models almost always consider
uncertainty in what we would characterise a first-order
computation – at most wondering about the effect of
different prior distributions over unknown quantities.
It would be interesting to think about the equivalent
of postdecisional and second-order models – where
agents could gain some extra, partially independent,
information about the quality of their actions, for in-
stance by observing other agents (Zhang & Gläscher,
2020). It might then be possible to use the sort of meth-
ods we have discussed to draw out the implications for
exploration.

Outside of areas related to information acquisition,
confidence also plays a key role in controlling other
processes. For example, cognitive offloading (Gilbert
et al., 2020; Hu, Luo, & Fleming, 2019; Risko & Gilbert,
2016), such as setting reminders, is closely tied to our
subjective feeling of future success. Humans also pri-
oritize the completion of different tasks as a func-
tion of their confidence (Aguilar-Lleyda, Lemarchand,
& de Gardelle, 2020) and use confidence to decide
adaptively when to deploy attention (Desender, Boldt,
Verguts, & Donner, 2019; van den Berg et al., 2016). On
a longer time horizon, confidence also shapes learn-
ing (Bjork, Dunlosky, & Kornell, 2013; Metcalfe & Finn,
2008). Here, computational modelling has shown, that,
on the one hand, we learn from our local confidence
about our own broader skills (Rouault, Dayan, & Flem-
ing, 2019). On the other, we use momentary estimates
of uncertainty to steer how much we learn from er-
rors (Behrens, Woolrich, Walton, & Rushworth, 2007;
McGuire, Nassar, Gold, & Kable, 2014; Vaghi et al.,
2017). Investigating these phenomena computation-

ally through a more detailed and integrated model of
metacognitive monitoring and control might provide
insights into both their function and dysfunction.

Whether in our paradigm or in exploration-
exploitation, the collection of information serves to in-
crease an agent’s reward and thus has a direct instru-
mental purpose. However, there is also a large litera-
ture dealing with what at first glance appears to be non-
instrumental information seeking. Such "curiosity" for
seemingly (at least currently) reward-irrelevant infor-
mation has long been a puzzle to experimentalists and
theoreticians (Gottlieb & Oudeyer, 2018; Iigaya, Story,
Kurth-Nelson, Dolan, & Dayan, 2016; Kidd & Hayden,
2015; Kobayashi, Ravaioli, Baranès, Woodford, & Got-
tlieb, 2019). As in instrumental information search,
confidence often plays a key role in the treatment of
such behaviour, although its role is contested. Whereas
some propose a monotonic relationship between confi-
dence and curiosity similar to our instrumental results
(Berlyne, 1950; Lehman & Stanley, 2011), others argue
that intermediate levels of confidence are most con-
ducive to curiosity (Baranes, Oudeyer, & Gottlieb, 2014;
Kang et al., 2009; Kidd, Piantadosi, & Aslin, 2012).6

Others have attempted to reconcile these two perspec-
tives (Dubey & Griffiths, 2020). These various models
might benefit from the sort of explicit treatment of the
underlying confidence that we have discussed.

In the real world, information is often not solely pro-
vided by faceless sources, but by other agents with
their own intentions. Over and above just being noisy
(and indeed nosey), such social sources might have
their own biases and interests of which successful
agents need to be aware when evaluating whether they
should invest in hearing their opinion and using them
to inform themselves (Hütter & Ache, 2016; Pescetelli
& Yeung, 2020; van der Plas, David, & Fleming, 2019).
This is a particular pressing issue when faced with
mis- and dis-information (Lazer et al., 2018; Penny-
cook & Rand, 2020). Such scenarios will require adap-
tive metacognitive systems to make inferences not only
about themselves but also about others. Theories such
as cognitive hierarchy (Camerer, Ho, & Chong, 2004) or
interactive POMDPs (Gmytrasiewicz & Doshi, 2004) or
Rational Speech Acts (Goodman & Stuhlmüller, 2013)
could be adapted to consider hierarchies of partially
self-aware agents interacting with each other.

Finally, we note that hierarchies of ever more sophis-
ticated sub-agents that model each other inside a sin-
gle decision-maker constitute a form of theory of (an
internal) mind that is somewhat reminiscent of these

6We observe inverse U-shapes under some extreme pa-
rameter settings, but stress that these are due to the signal and
noise properties of the second-order model (see appendix B)
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externally-directed cognitive hierarchies (Carruthers,
2009). If the internal sub-agents enjoy their own par-
tially individual rewards – so, for instance, the rater
might have an incentive to lie about its confidence if it
faces an overwhelming loss for being wrong – we can
expect very rich patterns of behaviour to emerge, with
agents partially fooling themselves as well as others.
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Appendix A
Model details

Postdecisional model

Predicting XF

To predict the location of XF for the value of seeking,
the seeker combines the two possible normal distribu-
tion weighted them by the associated confidence:

p(XF |ZI) = p(XF |d = −1)P(d = −1|ZI)+
p(XF |d = 1)P(d = 1|ZI)

(22)

Second-Order Model

Confidence

Fleming and Daw (2017) describe the computations
underlying their second-order model. Here, we present
them in our notation. Recall that the rater observes the
actor’s decision aI and receives its own cue YI and has
to use this information to compute the probability that
the actor’s decision was the correct one:

cI = P(aI = d|YI ; ΣI) =

P(d = 1|YI , aI ; ΣI) if aI = 1.
P(d = −1|YI , aI ; ΣI) if aI = −1.

(23)
As with the postdecisional model, we apply Bayes-

rule to compute this. In the following, we suppress ΣI

for clarity:

P(d|YI , aI) =
P(d|YI)P(aI |YI , d)∑
d P(d|YI)P(aI |YI , d)

(24)

We begin teasing this apart, beginning with the sec-
ond term:

P(aI |YI , d) =

∫
XI

P(aI |XI)P(XI |YI , d)dXI (25)

Because P(aI |XI) is contingent on the threshold (so
that aI = 1 if XI > 0), this can also be expressed as:

P(aI |YI , d) =


∞∫
0

P(XI |YI , d)dXI if aI = 1.

0∫
−∞

P(XI |YI , d)dXI if aI = −1.
(26)

This is cumulative density function of the condi-
tional density of a multivariate Gaussian. This condi-
tional density of a multivariate Gaussian is itself simply
a univariate Gaussian.

P(XI |YI , d) ∼ N(µXI |YI , σXI |YI ) (27)

The conditional parameters of this distribution are
defined as follows:

µXI |YI = d +
σI

τI
ρ(YI − d) (28)

σXI |YI =

√
(1 − ρ2)σ2

I (29)

The first term is the normalized likelihood of YI con-
ditioned on a d:

P(d|YI) ∝ P(YI |d) (30)

P(YI |d) in turn equals the density of a unidimen-
sional Gaussian with mean d and standard deviation
τI at YI .

Optimal weighting of XI and YI for YI under covariance

In contrast to the postdecisonal model, we cannot
simply weigh XI and YI according to their variances
when combining them to ZI . Rather, we need to take
into account their covariance (Oruç, Maloney, & Landy,
2003). As a result, XI and YI are summed with their re-
spective weights wXI and wYI

ZI = wXI XI + wYI YI (31)

These weights are functions of the reliabilities of the
cues which in turn are corrected for the correlation.

wXI =
r′XI

r′YI
+ r′XI

and wYI =
r′YI

r′YI
+ r′XI

(32)

r′XI
= rXI − ρI

√
rXI rYI and r′YI

= rYI − ρI
√

rXI rYI (33)

rXI =
1
σ2

I

and rYI =
1
τ2

I

(34)

This way we can also define the standard deviation
ζI of ZI .

ζI =

√
1

rZI

(35)

rZI =
rXI + rYI − 2ρ√rXI rYI

1 − ρ2
I

(36)

This form of cue combination can give rise to sev-
eral non-intuitive results which we discuss further be-
low.
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Value computations

In the following, we detail the value computations
in the the second-order model. First, if there is no seek-
ing, the actor uses ZI (see above) to make its decision.
The value of this combined stimulus is defined as:

V∗F,ZI
= max{P(d = 1|ZI), P(d = −1|ZI)}rF (37)

This is then used in the Q-value computations for
the Q-value of not seeking (see equation 17)

However, the seeker does not know ZI , because it
does not have access to XI . It therefore has to marginal-
ize out this quantity

V∗F,YI ,0 =

∫
ZI

p(ZI |YI , aI)V∗F,ZI
dZI (38)

=

∫
XI

p(XI |YI , aI)V∗F,ZI
dXI where (39)

p(XI |YI , aI) = p(XI |YI , d = −1)P(d = −1|YI , aI)+
p(XI |YI , d = 1)P(d = 1|YI , aI)

(40)

Given seeking, the actor receives XF (again as per
equation 10) which it combines with ZI to form a joint
variable ZF (see equation 12). This variable can then
again be compared against a threshold for aF,1. Given
this set-up, we can now consider the values that go into
the individual Q-value computations.

V∗F,ZF
= max{P(d = 1|ZF), P(d = −1|ZF)}rF (41)

Similarly to the first-order and postdecisional mod-
els, the seeker does not know all the variables under-
lying ZF , when it decides whether to seek, and it also
does not know ZI . Therefore, it has to marginalize over
them both:

V∗F,YI ,1 =

∫
ZF

p(ZF |YI , aI)V∗F,ZF
dZF (42)

=

∫
XI

∫
XF

p(XI , XF |YI , aI)V∗F,ZF
dXFdXI (43)

where

p(XI , XF |YI , aI) = p(XI |YI , aI)(p(XF |d = −1)P(d = −1|YI , aI)+
p(XF |d = 1)P(d = 1|YI , aI)

(44)

Notice how both the with- and without-search
value computation contain, P(d|YI , aI), or the rater’s
confidence.

Appendix B

Further Second-Order Results
Confidence and general stimulus conditions

Signal, noise correlation

In the second-order stimulus condition, the correla-
tion can give rise to counterintuitive confidence curves.
This is visible in Fig B1 where we plot confidence val-
ues for a positive decision (aI = 1) varying the param-
eters individually. We observe a few aspects already
reported by Fleming and Daw (2017):

• Panel A: Increasing the accuracy of the actor
(lower σI) increases the boost that the confidence
receives through the action. If the actor is very
accurate, it takes a highly negative YI to overturn
the decision.

• Panel B: Higher rater noise (τI) means the confi-
dence curves will be less well-tuned.

• Panel C: Higher correlations (ρI) also results in a
reduced sharpness in the confidence curves.

However, what has yet to be reported is the follow-
ing: Under conditions of metacognitive hyposensitiv-
ity, that is when σI is sufficiently smaller than τI , and
when ρI is large enough, confidence will begin rising
again with seemingly contradictory YI ’s. This is partic-
ularly visible in the rightmost panel where ρI is most
pronounced, but is also visible in the most extreme
cases in panels A and B. As an example, imagine the
actor has received XI = 0.5 and decides aI = 1. If the
rater receives YI = −5, this would usually be a strong
error signal and the confidence in the initial decision
very lower than when YI would have had more inter-
mediate values. However, under some parameter con-
ditions, the exact opposite is the case: There, when YI

strongly contradicts the decision sign, confidence will
in fact be higher for this very low YI than for YI = 0.

While we note that the marginal probability of these
cases is relatively low given the underlying correlation,
such a pattern is striking. The reason for it lies in the
the way the two possible sources occupy the XI and YI

space and create signal and noise (compare Figure 1 E).
A crucial aspect of this is the line on which the poste-
rior based on ZI (i.e. the combination of XI and YI) is
uniform, so that P(d = 1|XI ,YI) = P(d = −1|XI ,YI) = 0.5.
It is this posterior that the rater only has partial infor-
mation about. The equality line subdivides the space
in two zones where the likelihood of d = 1 is larger
than the likelihood of d = −1 (or vice versa). Given the
equal prior, this line of equality in turn is defined by the
points at which the two likelihoods equal each other.

p(XI ,YI |d = −1) = p(XI ,YI |d = 1) (45)
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Figure B1
Second-order confidence across parameter regimes. (A-C) Second-order confidence as a function of YI for
aI = 1. In general, note how confidence for a completely ambiguous rater cue (YI = 0) doesn’t necessarily mean
that confidence cI will be 0.5. (A) This is mainly a function of the relationship between σI and τI . (B) High values
of τI for a fixed σI can lead to the confidence being less sensitive to YI . When τI is particularly large in relation to
σI , the confidence will in fact again begin to rise for negative YI ’s (which intuitively contradict aI). Grey line in
(A) and (B) highlights an equivalent parameter setting of τI = σI = 2, ρI = .5. (C) This rise of confidence with
contradictory rater cues YI is particularly pronounced for high correlations ρI . The rising confidence is tied to the
way the correlation affects signal and noise and in extension the line on which the joint posterior P(d|XI ,YI) is
equivalent between the two d. This line is plotted in (D-F). When metacognitively hyposensitive (σI < τI) and
when the correlation ρI between YI and XI is high enough, confidence will not decrease for negative YI but rather
again rise.

The two likelihoods are defined by the bivariate
normal distribution’s density:

p(XI ,YI |d) =
1

2πσIτI

√
1 − ρ2

I

e
(XI−d)2

σ2
I
−

2ρ(XI−d)(YI−d)
σI τI

+
(YI−d)2

τ2
I (46)

From this, we can can define the values of YI for
which the two posteriors equal each other as a function
of XI :

YI = −mXI (47)
where from equation 45, we get:

m =

1
σ2

I
−

ρI
σIτI

1
τ2

I
−

ρI
σIτI

(48)

We plot this in Figure B1 D-F for a range of parame-
ter combinations. When there is no correlation ρI = 0, m
(panel F) this line is defined by τ2

I

σ2
I

and the space is thus
divided diagonally from a positive YI to a negative YI

with the slope defined by the relationship between the
two parameters. This general result holds, even when
re-introducing the correlation. Importantly, what this
division of space means is that for every possible actor
cue XI , more positive rater cues YI will favour d = 1 and
more negative YI will favour d = −1. Crucially how-
ever, under metacognitive hyposensitivity (τI > σI) this
diagonal becomes steeper and steeper until it is fully
vertical. This point is defined when:

ρI =
σI

τI
(49)
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In other words, at this point, the decision rule based
on YI and XI is the same as based on XI alone – YI thus
affords no additional help with the decision. Beyond
this vertical point, the space is again divided diago-
nally, but the dividing line now has a positive rather
than negative slope. This only appears under relatively
extreme parameter combinations, but will crucially flip
the logic outlined above. Now, for every XI , lower val-
ues of YI will begin providing more evidence for d = 1
instead of d = −1. This then in turn gives rise to the
confidence rising with seemingly contradictory values
of YI . This phenomenon will appear once the equality
lines have ’flipped’, as is visible when comparing the
confidence curves and slopes depicted in Fig. B1.

Relationship between ζI and σI , τI , ρI

As alluded to in the main text, the joint standard
deviation ζI produced from optimally combining σI , τI

and ρI stands in a non-trivial relationship with its sub-
parts.

For context, recall how the σI and τI are combined
when there is no correlation (see equation 5). As we
discussed in the main text, the maximum of ζI is then
defined by the smaller of the two standard deviations
σI and τI . Additionally, the smaller the larger of the
two is, the smaller ζI becomes. In other words, the
agent would benefit from a reduction of noise in both
cases. For an illustration of this effect, see the yellow-
most lines in Figure B2A that show a cue integration in
accuracy space (φ(ζI)) as a function of φ(σI) for ρI = 0.
Notice how lower τI ’s shift the baseline upwards and
how the better accuracy of afforded by σI increases the
accuracy afforded by ζI .

In most cases of optimal cue combination, two inde-
pendent sources (low ρI) of information hold more in-
formation (lower ζI) than two correlated sources (high
ρI). This is also the case for most parameter combina-
tions in our scenario. Crucially however, this intuitive
relationship fails for some specific combinations of val-
ues, particularly for very high correlations. This is vis-
ible in Figure B2A where for a fixed rater noise τI lower
accuracy σI produce more accurate ζI than higher accu-
racy σI (especially τI = 2 in panel A and ρI = 0.8 in
panel B).

Figure B2 shows these non-monotonic relationships
for a range of parameter combinations. This broadly
highlights that, if parameter combinations are extreme,
then there is no monotonic relationship between the
three initial source parameters and the accuracy af-
forded by their combination (φ(ζI).

These pattern again partially stem from how the
space is optimally divided by the two sources. Specif-
ically, when the equality line ’flips’, the posteriors get

compressed differently between the two sources, al-
lowing a better inference than in the classical separa-
tion of XI , YI space.

The effects of this "flip" are formally analogous to
the way in population codes that correlations between
the activities of units can either help or hurt discrimi-
nation and decoding depending on their alignment rel-
ative to the way that signals are coded (the mean dif-
ference) (Abbott & Dayan, 1999).

Seeking and final accuracy for the high ρI

The two aforementioned particularities of the
second-order model also impact the agent’s search be-
haviour and final accuracy, which we depict in Figure
B3.

The fact that confidence rises again with contradic-
tory values of YI will result in U-shaped seeking curves
for most τI . This is because the rising confidence will
favour not seeking, rather than seeking once the ac-
tor accuracy is below a specific value while keeping τI

fixed.
With regards to the final accuracy, the maximum at-

tainable accuracy from combining XI and YI (and XF)
will be impacted by the combination of σI , τI and ρI

giving rise to ζI (discussed above). This will for ex-
ample mean that more accurate (low τI) raters can pro-
duce less accurate final judgements than noisier (high
τI) raters.

Appendix C
Methods

We implemented our models and simulations in R. Our
code will be provided as online supplemental mate-
rial upon publication and hosted openly on a dedicated
github repository (github.com/lionschulz/).
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Figure B2
Accuracy obtainable through the standard deviation ζI of combined cue ZI in the second order model.
Optimally combining the parameters of the initial decision ( σI , τI and ρI) can give rise to non-monotonic rela-
tionships between initial accuracy and accuracy attained through ζI , i.e. φ(ζI).
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Effects of high correlation between actor and rater signal. (A) Average search by average initial accuracy
and rater noise τI . (B) Final accuracy by average initial accuracy and rater noise, and conditioned on whether the
agent sought out information or not.
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