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Explicit representation of confidence informs 
future value-based decisions
Tomas Folke1, Catrine Jacobsen2, Stephen M. Fleming3 and Benedetto De Martino4*

Humans can reflect on decisions and report variable levels of confidence. But why maintain an explicit representation of confi-
dence for choices that have already been made and therefore cannot be undone? Here we show that an explicit representation 
of confidence is harnessed for subsequent changes of mind. Specifically, when confidence is low, participants are more likely 
to change their minds when the same choice is presented again, an effect that is most pronounced in participants with greater 
fidelity in their confidence reports. Furthermore, we show that choices reported with high confidence follow a more consistent 
pattern (fewer transitivity violations). Finally, by tracking participants’ eye movements, we demonstrate that lower-level gaze 
dynamics can track uncertainty but do not directly impact changes of mind. These results suggest that an explicit and accurate 
representation of confidence has a positive impact on the quality of future value-based decisions.

As we navigate through life, we are constantly faced with choices 
that require us to assign and compare the values of different 
options or actions. Some of these value-based choices seem 

relatively straightforward (‘what should I eat for lunch?’) and others 
less so (‘which job offer should I take?’). No matter how simple or 
complex these choices are, they are often accompanied by a sense of 
confidence in having made the right choice. Recent work has shown 
that it is possible to behaviourally and computationally dissociate 
a value estimate (‘how much do I like something?’) from internal 
fluctuations in confidence (‘how sure am I?’). For example, at a 
behavioural level it has been shown that confidence shares only a 
limited amount of variance with value and instead reflects an assess-
ment of choice accuracy1. This relation between value and confi-
dence is neatly accounted for computationally by assuming that 
confidence emerges from the dynamics of noisy accumulators in an 
evidence-accumulation framework1–4. More recently, Lebreton and 
colleagues5 showed that confidence may be an inherent property 
of value estimation, sharing a quadratic relationship with a linear 
rating of value (see also Barron and colleagues6). But what is the 
function of confidence? Why maintain an explicit representation  
of confidence when a choice has already been made and therefore 
cannot be undone?

According to one view, confidence can be thought of as a by-
product of a stochastic accumulation process that is implemented 
in the ventromedial prefrontal cortex during value comparison. 
Research indicates the brain constructs an explicit representation of 
confidence that underpins verbal reports7,8. Studies suggest that the 
rostrolateral prefrontal cortex represents confidence in both value-
based and perceptual decisions1,9–11. Explicit representations of 
confidence allow individuals to communicate the strength of their 
beliefs to others, facilitating group decisions12,13, but may play little 
role in one’s own decision process.

An alternative view is that explicit representations of confi-
dence are critical for guiding one’s own future behaviour14. Work 
in perceptual decision-making has revealed commonalities between 
mechanisms supporting confidence construction and error  
monitoring15,16, suggesting changes of mind may be informed by 
confidence4. However, whether confidence is harnessed over a 

longer timescale to guide future choices is unknown. We aim to 
test the hypothesis that an explicit (and well-tuned) representa-
tion of confidence in a recent choice can guide a decision maker’s 
choice when faced with the same (or a similar) decision again. To 
test this hypothesis we presented participants with the same set of 
choices more than once during the course of two experiments and 
tested which factors were associated with a change of mind. We 
then investigated how confidence related to the degree of internal 
consistency in their patterns of choice. Choice consistency can be 
quantified by measuring the degree of transitivity across choices. 
Here we introduced a novel method for tagging choices as conform-
ing to or violating transitivity. Using this method we were able to 
show that explicit representations of confidence are associated with 
more consistent patterns of choice as a consequence of changes of 
mind. Finally, we directly contrasted the effect of explicit confidence 
reports with lower-level markers of uncertainty that we gathered 
using eye tracking, revealing that changes of mind were specifically 
associated with explicit reports of confidence.

Results
We collected data in two experiments in which hungry participants 
made choices between food items (which they could consume later) 
while their eye movements were monitored. In the first experi-
ment, the 28 participants were shown high-definition pictures of 
two snacks and were asked to choose their preferred one (Fig. 1a). 
In a second experiment, 24 participants chose their preferred snack 
among three snacks available in each trial (Fig. 1d). After making 
each choice, participants reported their degree of confidence in 
having made the ‘correct’ choice, which in this design equates to 
choosing the higher-valued item. The value for individual items was 
elicited using a standard incentive-compatible Becker–DeGroot–
Marschak (BDM) method17. The experimental procedure we used 
was adapted from a task we developed previously1 (see Methods for 
more details).

Relation between confidence and choice. In line with a wealth of 
research18–22, we found that the difference in value between the two 
items (constructed from values elicited through a BDM bidding 
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procedure) was a reliable predictor of participants’ choices in both 
experiments (hierarchical logistic regression; experiment 1: z =​ 11.48,  
P <​ 0.0001, Fig.  1c,f; experiment 2: z =​ 6.66, P <​ 0.0001, Fig.  1b,e). 
Note that in the three-choice design (experiment 2) value difference 
(DV) was calculated as the difference between the value of the refer-
ence item and the average of the two other available options (fol-
lowing Krajbich and Rangel23). In the Supplementary Information 
we report the results of a multinomial logistic regression model in 
which the value of each option was inputted independently and 
therefore does not require a priori specification of DV. This analysis 
yielded the same pattern of results. In both studies we also identi-
fied a significant negative interaction between the summed value of 
all options (SV) and DV (experiment 1: z =​ −​3.08, P <​ 0.005; experi-
ment 2: z =​ −​2.84, P <​ 0.005), indicating that DV had a stronger 
influence on choice when item values were low than when they were 
high (Fig. 1c,f). To our knowledge this effect has not been reported 
before, but it is consistent with the Weber–Fechner law of sensory 
perception in which the resolution of precepts diminishes for stimuli 
of greater magnitude. The effect is also compatible with the notion 
of normalization24–26. Confidence, unlike DV, was not in itself a 
predictor of choice (right or left item) but instead correlated with 
choice accuracy, with a steeper slope relating DV to choice when 
confidence was high, as found previously1 (Fig. 1b,e; experiment 1: 
z =​ 7.43, P <​ 0.0001; experiment 2: z =​ 5.82, P <​ 0.0001).

We used eye tracking to measure the dynamics of eye movements 
between items during decision-making: both the total amount of 
time participants spent looking at each item and how frequently 
gaze shifted back and forth between items (see Supplementary 
Information). Replicating previous studies23,27, we found the differ-
ence in dwell time (DDT) was a robust predictor of choice in both 
two-option and three-option experiments (experiment 1: z =​ 4.95, 
P <​ 0.0001; experiment 2: z =​ 9.81, P <​ 0.0001; Fig. 1c,f).

For a full list of fitted models and their respective Bayesian infor-
mation criterion (BIC) scores see the Supplementary Information.

Factors that contribute to confidence. We next investigated which 
variables contributed to subjective confidence during value-based 
choices. Our previous work showed an interrelationship between 
the absolute difference in value (|DV|), response time (RT) and con-
fidence (that is, participants are more confident when |DV| is high 
and their choices are made more quickly)1. These findings are in 
line with the conceptual relation between confidence, strength of 
evidence (indexed by |DV| in the value-based framework) and deci-
sion time3,28. We observed this same relation in the current study. 
In both experiments we found that |DV| was a significant predic-
tor of confidence (experiment 1: t =​ 13.43 P <​ 0.0001; experiment 2: 
t =​ 7.46, P <​ 0.0001). We also found that RT was a negative predictor 
of confidence (experiment 1: t =​ −​10.01, P <​ 0.0001; experiment 2:  
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Figure 1 | Relation between confidence and choice. a, In experiment 1, participants were presented with two snack items and were required to choose one 
item to consume at the end of the experiment (snacks are shown here unwrapped for copyright reasons while in the actual experiment were shown in their 
wrappers). d, In experiment 2, participants chose between three options, and the presentation of the stimuli was contingent on which box participants 
looked at. In both experiments, participants indicated their confidence that they had made a correct decision on a visual analogue scale after each choice 
that they made. b, Probability of choosing the item on the right as a function of the difference in value between the two available options. e, Probability of 
choosing the reference item (see Methods), as a function of the value difference (DV) between the reference item and the mean value of the alternatives. 
The black lines indicate high-confidence trials and the grey lines low-confidence trials (as determined by a median split). Each graph shows the z-scored 
data pooled across participants: points represent quartiles of difference in value and the error bars show standard errors. c,f, Fixed-effects coefficients from 
hierarchical logistic regression models that predict choice. The graph for experiment 1 shows the coefficients that predict the probability of choosing the 
right-hand option (c); the graph for experiment 2 shows the coefficients that predict the probability of choosing the reference option (f) (see Methods). 
Error bars show the 95% confidence intervals. The sample size for experiment 1 was 28 participants (each completing 240 trials); the sample size for 
experiment 2 was 24 participants (each completing 144 trials). DV ×​ confidence, interaction of difference in value and confidence; DV ×​ SV, interaction of 
difference in value and summed value (SV). ***P <​ 0.001; **P <​ 0.01; *P <​ 0.05 (two-sided t-test). Eye-tracking variables are reported in blue.
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t =​ −​7.53, P <​ 0.0001). Additionally, we found that the summed 
value positively predicted confidence, meaning that participants 
tended to be more confident when the options were all high in 
value (experiment 1: t =​ 3.50, P <​ 0.005; experiment 2: t =​ 4.80,  
P <​ 0.0001). This finding indicates that overall value might boost 
confidence, despite paradoxically making choices less accurate. 
More broadly, these findings highlight how evidence and confi-
dence, although related, play partially independent roles in the 
decision-making process. Note that all of the predictors analysed 
in this section were entered into the same hierarchical linear regres-
sion; therefore all of the effects hold when controlling for the other 
variables reported.

We also hypothesized that lower-level features of information 
sampling may reflect an individual’s explicit confidence reports. To 
test this idea, we constructed a novel measure that captured uncer-
tainty in information-sampling behaviour. This new measure, which 
we termed gaze-shift frequency (GSF), indexes how frequently gaze 
shifted back and forth among the options presented on the screen. This 
measure is independent of DDT (experiment 1: Pearson’s correlation 
coefficient (r) =​ −​0.02, experiment 2: r =​ 0.04): for a constant alloca-
tion of time between the options (for example, 3 s for the left-hand 
option and 5 s for the right-hand option), one may shift fixation only  
once (switching from left to right after 3 s have elapsed, for exam-
ple; low GSF) or shift many times between the two options (high  
GSF). We found that the GSF was a robust negative predictor of 
confidence in both experiments (experiment 1: t =​ −​3.67, P <​ 0.005; 
experiment 2: t =​ −​8.94, P <​ 0.0001) see Fig. 2a,b. In other words,  
in trials in which participants shifted their gaze more often  

between the available options, their confidence was lower,  
even after accounting for changes in |DV| and RT. The four-way 
relationship between |DV|, RT, GSF and confidence is plotted in 
Fig.  2c,d. Correlation tables can be found in the Supplementary 
Information.

Confidence predicts change of mind. In both experiments, partici-
pants saw the same exact choice sets on more than one occasion. In 
experiment 1 each pair was presented twice; in experiment 2 each 
triad was presented three times (counterbalancing for different spa-
tial locations). This design allowed us to determine the factors that 
affect a change of mind when the same choice is encountered again. 
Note that the way we define change of mind in this study differs 
from how it is often defined in perceptual decision-making, as a 
reversal in a continuing motor plan due to further processing of sen-
sory information4,15,29,30. The hypothesis we sought to test was that 
an explicit report of confidence in an initial choice at time t would 
influence behaviour when the same decision was presented again at 
a future time (tfuture). In a hierarchical logistic regression, lower con-
fidence at t was indeed associated with increased changes of mind 
at tfuture in both experiments (experiment 1: z =​ −​6.70, P <​ 0.0001; 
experiment 2: z =​ –5.71, P <​ 0.0001). The effect of confidence in pre-
dicting change of mind remained robust after controlling for several 
other factors that might correlate with the stability of a choice such 
as |DV| and RT. Because |DV| correlated positively with confidence 
(see the previous section and the Supplementary Information), 
we checked the covariance matrices and variance inflation fac-
tors (VIFs) to ensure that these correlations did not influence the 
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Figure 2 | Factors that contribute to confidence. a,b, Fixed-effect coefficients in hierarchical regression models that predict confidence for experiments 1 
(a) and 2 (b). Error bars show the 95% confidence intervals. c,d, 4D heat maps for experiments 1 (c) and 2 (d) showing the mean z-scored confidence as 
a function of subject-specific quantiles of response time, absolute difference in value and GSF. The sample size for experiment 1 was 28 participants (each 
completing 240 trials); the sample size for experiment 2 was 24 participants (each completing 144 trials). ***P <​ 0.001; **P <​ 0.01; *P <​ 0.05 (two-sided t-test). 
Eye-tracking variables are reported in blue.
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interpretation of our findings. Both the covariances and the VIFs 
were below standard thresholds, allowing the straightforward inter-
pretation of coefficients (see the Supplementary Information). 
Furthermore, to rule out the possibility that the effect we observed 
was driven by the presence of fast motor errors that were later cor-
rected by the participant, we reanalysed the data excluding all tri-
als that were faster than each participant’s mean response time. 
This analysis produced comparable results (see the Supplementary 
Information). Notably, GSF (itself a correlate of confidence) did not 
predict a change of mind when included in the regression analy-
sis (Fig. 3a,b, coefficients in blue), even when excluding reported 
confidence from the regression analysis (see the Supplementary 
Information Section 7a). Together, these results suggest that a low-
level (and possibly implicit) representation of uncertainty indexed 
by GSF is insufficient to trigger a future change of mind. On the 
contrary, individuals may use an explicit representation of uncer-
tainty (expressed through confidence) to reverse their initial deci-
sion when the same (or a similar) choice is presented again.

We next harnessed individual differences in metacognition to 
provide a more stringent test of this hypothesis. We reasoned that 
the impact of confidence on changes of mind would be more prom-
inent in participants with enhanced metacognitive skills, that is, 
those whose explicit confidence ratings more accurately track the 
level of uncertainty underlying their decision process. To test this 
hypothesis, we calculated an individual index of metacognitive sen-
sitivity by computing the difference in slope between psychometric 
functions fitted to high- and low-confidence trials1,31,32. We then ran 
a logistic regression to predict changes of mind at tfuture using confi-
dence measured at t. In line with our initial hypothesis, we were able 
to show that the impact of confidence on changes of mind (here the 
negative coefficient of confidence predicting a change of mind) is 
stronger in subjects with greater metacognitive accuracy (r =​ –0.35, 
P =​ 0.01) (Fig. 3c).

Link between confidence and choice transitivity. In the analyses 
presented above, we established a link between an explicit represen-
tation of confidence and future changes of mind. However, these 
analyses are agnostic to the quality of the decisions that emerge as 
a consequence of changes of mind. Not all choices are born equal; 
some are more consistent than others, which is formally captured 
by the notion of transitivity. A transitive ranking is characterized by 
the following structure: if option A is preferred over option B and 
option B is preferred over option C, then it follows that A should be 
preferred over C (that is, A ≻​ B and B ≻​ C then A ≻​ C). Transitivity 
is a normative prescription in utility theory33; however, failures of 
transitivity are commonly observed in human choices and represent 
a prominent violation of economic rationality and, more generally, 
of logical consistency34,35. To test the relation between confidence 
and transitivity, we found the (idiosyncratic) preference ranking 
of items that led to the lowest number of transitivity violations for 
each subject. Finding an optimal ranking of choice sets with more 
than a handful of items is extremely complex; however, a number 
of efficient algorithms that approximate a numerical solution have 
been developed for pairwise comparisons. In our study, we used the 
minimum violations ranking (MVR) algorithm36, which minimizes 
the number of inconsistencies in the ranking of items conditional 
on each participant’s choices. This method is conceptually similar  
to other methods that are based on revealed preferences such as 
Afriat’s efficiency index37,38. The MVR algorithm provided an opti-
mal ranking of items for each participant so we could tag choices  
that violate this ranking, hereafter labelled transitivity violations 
(TVs). Because most of these methods are not suited for ternary 
choice, the analyses presented in this section were performed only 
on the data collected for the experiment that used binary choice 
(experiment 1). An alternative way to assess choice quality is to  
compute the choice ranking using the BDM method and  
test whether participants chose the item with the highest ranking. 
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Figure 3 | Confidence predicts change of mind. a,b, Fixed-effect coefficients from hierarchical logistic regression models that predict future changes of 
mind for experiments 1 (a) and 2 (b). Error bars show the 95% confidence intervals. c, Correlation between metacognitive accuracy and the coefficients for 
confidence ratings that predict future changes of mind (highlighted in pale green in a,b). Participants with greater metacognitive accuracy are more likely 
to change their mind following a low-confidence judgment; note that the correlation is negative because the relationship between confidence and changes 
of mind is itself negative (lower confidence increases the probability of subsequent changes of mind). Both axes (x and y) are z-scored for each experiment 
separately. The sample size for experiment 1 was 28 participants (each completing 240 trials); the sample size for experiment 2 was 24 participants (each 
completing 144 trials). ***P <​ 0.001; **P <​ 0.01; *P <​ 0.05 (two-sided). Eye-tracking variables are reported in blue.
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This method gives qualitatively similar results to those reported 
below (see the Supplementary Information).

After the participants’ choices were ordered according to the 
MVR algorithm, 4.5% of all of the decisions were classified as TVs. 
We then split the dataset into trials in which participants reported 
high confidence and trials in which they reported low confidence 
(median split). A dramatic reduction in TVs was observed in high 
confidence trials (16% of TVs) in comparison to low confidence 
trials (84 % of TVs) (Fig. 4a). Although these results are consistent 
with previous evidence provided here and elsewhere1, note that 
we did not rely on BDM value estimates (collected post-choice), 
instead we relied only on subjects’ choices to generate the optimal 
ranking. In other words, the link between confidence and the qual-
ity of a value-based decision is robust to the method used to elicit 
preference. To statistically quantify the relation between confidence 
and TVs on a trial-by-trial basis (while accounting for other factors 
that may result in violations of transitivity), we constructed a set of 
hierarchical logistic regression models. We found that |DV| was a 
robust negative predictor of TV (z =​ −​6.59, P <​ 0.0001; Fig. 4b) such 
that participants were more likely to violate transitivity when items 
were closer in value. Critically, this same model showed that even 
when |DV| was accounted for, confidence was a negative predic-
tor of TVs (z =​ –6.75, P <​ 0 .0001). In other words, participants were 
less confident during those trials in which they went against their 
best-fitting preference order. Finally, both response time (z =​ 2.55, 
P =​ 0.01) and summed value (z =​ 2.55, P =​ 0.01) positively predicted 
TVs, such that trials in which the value of both options was higher 
and/or in trials in which their responses were slower, participants’ 
choices were more likely to result in TVs. Similar to change-of-
mind analysis, eye-tracking variables did not reliably predict TVs 
(GSF =​ −​1.74, P =​ 0.08; |DDT| z =​ −​0.47, P =​ 0.64) (Fig. 5b). Note 
that this was still true when reported confidence was excluded  
from the regression analysis (see the Supplementary Information 
Section 7b).

Finally we examined whether intersubject variability in meta-
cognitive ability affected TVs. We reasoned that if a well-calibrated 
explicit representation of uncertainty plays a role in guiding future 
decisions, participants with greater metacognitive ability would 
show a decrease in the number of TVs when the same option was pre-
sented a second time. In line with this hypothesis, we observed that 
greater metacognitive ability was associated with a marked reduc-
tion in TVs between the first and second presentation of the same 
choice (standardized coefficient β =​ 0.85, s.e.m. =​ 0.42, z(26) =​ 2.03, 
P <​ 0.05; Fig. 4c). We also confirmed that this effect was not due to a 
relationship between metacognition and choice instability: the total 
number of TVs was unrelated to metacognitive accuracy (β =​ −​1.83, 
s.e.m. =​ 1.61, z(26) =​ −​1.14, P =​ 0.25). Together, these analyses show 

that a more accurate explicit representation of confidence is asso-
ciated with more optimal choices when participants are given the 
opportunity to change their minds.

Discussion
What is the advantage of explicitly representing one’s confidence 
in value-based decision-making? Most experimental set-ups elicit 
confidence after a decision has been made and cannot be changed. 
Our hypothesis was that an explicit representation of confidence 
might serve an important role in decision-making by signalling the 
need to explore different alternatives when the same (or a similar) 
choice is presented again.

Value-based decisions are often perceptually unambiguous (for 
example, a banana is noticeably different from an apple), and most 
of the uncertainty is contingent on a number of internal processes 
such as memories or homeostatic states that are often difficult to 
manipulate experimentally. For example, a choice between two 
food items might be affected both by uncertainty about the tastes 
of the items and by uncertainty about one’s own level of hunger. 
To take advantage of this information, a decision-maker should 
be able to correctly monitor uncertainty that arises from the dif-
ferent constitutive computations. A wealth of work has shown that 
humans can introspect on their choice process and report their level 
of confidence, an ability that has been associated with the psycho-
logical concept of metacognition. However, the functions of these 
explicit representations of confidence (as opposed to implicit mark-
ers of uncertainty such as decision time) have remained unclear. 
Furthermore, individuals show wide variations in how accurately 
they can track and report fluctuations in uncertainty (that is, meta-
cognitive accuracy).

In two independent experiments we showed that confidence 
reports (elicited after a value-based decision) reliably predicted a 
change of mind when the same choice was presented again. This 
effect is robust after controlling for other factors associated with 
the difficulty of a decision, such as difference in value and reaction 
time. Furthermore, intersubject variability in metacognitive accu-
racy modulated the degree to which confidence predicted change 
of mind: confidence was a stronger predictor of change of mind in 
participants with better metacognitive abilities. Critically, and in 
contrast to our findings on explicit confidence reports, a lower-level 
marker of uncertainty (GSF) did not predict subsequent changes 
of mind, suggesting that an explicit representation of uncertainty 
expressed through confidence is im portant for guiding future 
choices. Instead, we suggest that GSF can be considered an ingre-
dient that agents use to construct a subjective sense of certainty, 
together with decision time and strength of evidence (Fig.  2c,d).  
An alternative interpretation of our results is that GSF does not 
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contribute directly to subjective confidence but reflects an agent’s 
attempt to gather more information to adaptively reduce uncer-
tainty (a situation in which confidence would be low and reaction 
time slow). Future work is required to distinguish between these 
two hypotheses. A further methodological appeal of GSF as a trial-
by-trial measure of uncertainty is that it can be easily gathered in 
animals. Recent years have seen a resurgence of interest in studying 
uncertainty and confidence using animal models39. This promising 
line of work relies heavily on the development of experimental para-
digms (such as opt-out or post-decision wagering) to measure the 
fluctuation in uncertainty during a decision process. GSF (which 
can be measured in rodents by tracking head movements) may 
prove a useful tool to monitor, on a trial-by-trial basis, internal fluc-
tuations in uncertainty and its relation to the neural encoding of 
decision time and strength of evidence.

Tracking the level of decision uncertainty is helpful in guiding 
behaviour in a number of contexts; for example, in guiding learn-
ing40, in deciding whether to explore a new alternative or stick with 
the current one41,42 or in evaluating an alternative course of action18. 
At the neural level, the rostrolateral prefrontal cortex and frontopo-
lar cortex have been shown to play key roles in tracking trial-by-trial 
evolution of uncertainty43–45 and modulating uncertainty-driven 
behaviours18,41,42,46–48. At the same time, the rostrolateral prefron-
tal cortex and frontal pole have also been shown (using a number 
of different methods) to play a key role in enabling metacognitive 
abilities1,10,11,14,32. It is therefore possible that these two processes 
are linked anatomically and computationally: individuals whose 
prefrontal cortex more closely tracks the trial-by-trial evolution of 
uncertainty might also have more accurate explicit representations 
of confidence. In turn, superior metacognitive abilities might con-
fer the advantage of knowing how uncertain one’s choice was and 
therefore guide future behavioural strategies, such as uncertainty-
driven exploration42 or changes of mind. As we did not collect neu-
ral measures in this study, we cannot test this hypothesis directly, 
but our findings provide a foundation for future studies of the neu-
robiology of changes of mind.

Another question we sought to address was whether changes of 
mind are associated with more optimal decisions. In value-based 
decisions the difference between a correct decision and an incor-
rect one is often murky because value is a subjective construct. 
However, when people make a series of value-based choices across 
a set of options, their pattern of decisions is characterized by a 
variable degree of internal consistency. In experiment 1 we used a 
recently developed algorithm to find an optimal ranking of items 
that produced the lowest number of TVs for each individual. In 
this way we identified when participants’ decisions were incon-
sistent with their overall (idiosyncratic) pattern of decisions. TVs 
are a paradigmatic example of irrationality in economic choice as 
they are easy to exploit. For example, when individual preferences 
are not transitive, it is possible to construct a choice set in which 
each decision appears fair on its own but when combined guaran-
tees a loss (a phenomenon known as a Dutch book or arbitrage in 
finance)49. We showed that choices made with high confidence are 
overall more transitive and therefore more optimal according to the 
normative prescriptions of utility theory. Noticeably, this effect is 
robust after controlling for the absolute difference in value and reac-
tion time. This finding suggests that individuals can monitor and 
report that a given decision was noisier and therefore more likely to 
result in a decision that is inconsistent with their overall preference 
patterns, establishing confidence as a correlate of choice accuracy 
without relying on the BDM procedure to derive independent esti-
mates of subjective utility. This result also resonates with the well-
established finding in perceptual decision-making that people are 
able to detect and signal errors as soon as they respond16,50 and with 
the proposal that confidence can facilitate cognitive control51. We 
suggest a similar process might operate in value-based decisions, 

in which errors can be thought of as choices that are at odds with 
one’s overall preferences. Consistent with this proposal, we found 
that individuals who have a more accurate representation of con-
fidence (greater metacognitive ability) were more likely to move 
towards a more internally consistent decision-making pattern over 
time. Our work sheds light on the reasons for an explicit represen-
tation of confidence in human decision-making. It explores value-
based choices (aka economic choices) by borrowing methods and 
concepts from perceptual decision-making52. Similar to perceptual 
decision-making, we found that the same ‘strength of evidence’ in 
value (that is, |DV|) is accompanied by a variable level of uncer-
tainty that is represented explicitly as confidence. We suggest  
these representations play a functional role not only in allowing 
confidence to be shared with others but also in guiding our own 
future choices. Taken together, our results show that an explicit and 
accurate representation of confidence can have a positive impact on 
the quality of future value-based decisions.

Methods
Experimental procedures. Experiment 1. Participants were required to make 
binary choices between 16 common snack items. Participants were asked to choose 
between each combination of the items (N =​ 120) twice, counterbalanced across 
the left–right spatial configurations (total number of choices =​ 240). After each 
choice, participants indicated their confidence in their decision on a continuous 
rating scale. Neither choices nor confidence ratings were time-constrained. The 
trial order was randomized with the only constraint being that the same pair was 
never repeated in subsequent trials. Participants’ eye movements were recorded 
throughout this task.

At the end of the experiment, one choice from this phase was played out and 
the subject had the opportunity to buy the chosen item by means of an auction 
administered according to the BDM procedure: the experimenter randomly 
extracted a price from a uniform distribution (£0–3)—the ‘market price’ of that 
item. If the participant’s bidding price (willingness to pay) was below the market 
price, no transaction occurred. The computer-generated value was drawn to 
a precision greater than two decimals to avoid the possibility of a tie but was 
rounded to pennies in the event of a transaction. If the subject’s bidding price 
was above the market price, the participant bought the snack item at the market 
price17. At the end of the experiment, participants had to remain in the laboratory 
for an additional hour. During this hour, the only food they were allowed to eat 
was the item purchased in the auction, if any. At the end of the waiting period, 
participants were debriefed and thanked for their participation. Participants were 
paid £25 for their time, less the cost of the food item, if they bought any. Both tasks 
were programmed using MATLAB 8.0 (MathWorks) running the Psychophysics 
toolbox (http://psychtoolbox.org) as well as the Eyelink toolbox extensions53,54. 
The procedure of this experiment was approved by the UCL Research Ethics 
Committee (project ID: 3736/004).

Experiment 2. Participants gave their willingness to pay for 72 common snack  
food items on a scale ranging from £0 to £3 in a BDM procedure17 that is similar  
to that in experiment 1. They then completed a choice task: in each trial, they  
had to pick their favourite item out of three options. The triplets presented in  
the choice task were tailored for each participant from their willingness-to-pay 
ratings. The items were divided into high-value and low-value sets by a median 
split. The 36 high-value items were randomly combined into 12 high-value triplets; 
this procedure was mirrored to generate 12 low-value triplets. The high-value  
and low-value items were then mixed to generate medium-value triplets, with  
12 triplets consisting of two high-value items and one low-value item and 
12 triplets with the reverse ratio. This resulted in 48 unique triplets, with 
counterbalanced spatial configurations (total trials =​ 144) split into three blocks. 
Each triplet was shown once in each block; the presentation order inside blocks 
was randomized with the constraint that the triplet that ended one block was  
never shown first in the next block.

In the subsequent choice task, the triplets were presented inside three squares 
in an equidistant 2 ×​ 2 grid (one randomly determined position on the grid 
was left empty). We used a gaze-contingent paradigm in which the items were 
only visible when the participant fixated inside one of the squares, so that the 
participant could only see one item at a time. They had unlimited time to make up 
their mind and could make as many fixations as they wished. After each choice, 
participants indicated their confidence in their decision on a visual analogue 
rating scale without any time constraints. Participants’ eye movements were 
recorded throughout the choice task. Both the choice task and the willingness-
to-pay procedure were programmed in Experiment Builder version 1.10.1640 
(SR-Research).

Following the choice task, an auction based on the BDM ratings was held  
(see experiment 1). After the auction, participants had to remain in the laboratory 
for an additional hour, as in experiment 1. At the end of the waiting period, 
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participants were debriefed and thanked for their participation. Participants 
were paid £15 for their time, less the cost of the food item, if they bought any. 
The procedure of this experiment was approved by the University of Cambridge 
Psychology Research Ethics Committee (application no. Pre2014.113).

Exclusion criteria. Because the aim of the experiment was to explore the 
relationship between confidence and value, it was essential that we had enough 
measurement sensitivity in both the confidence scale and in the value scale (the 
BDM ratings) and that participants’ choices reflected their stated preferences.  
We therefore excluded participants if any of the following criteria were met:

(1)	Participants used less than 25% of the BDM scale.
(2)	Participants gave exactly the same BDM rating for more than 25% of  

the items.
(3)	Participants used less than 25% of the confidence scale.
(4)	Participants gave exactly the same confidence rating for more than 25% of 

their choices.
(5)	Participant choices did not correspond to their BDM ratings (when predict-

ing choices from differences in value, the DV coefficient deviated by more 
than 2 standard deviations (s.d.) from the experiment mean).

Participants. Experiment 1. A total of 30 participants took part in the study. One 
participant did not complete the task and one participant was excluded because the 
BDM estimates were poor predictors of his choice (failed criterion 5). Thus 28  
participants were included in the analysis (13 females, aged: 19–73). All participants  
were required to fast for 4 hours before taking part in the experiment. Blood 
glucose levels were taken to test their adherence to this criterion (mean glucose 
level =​ 83.57 mg dl−1, s.d. =​ 10.90 mg dl−1; by comparison, the mean fasting blood 
glucose levels for adults is 86.4 mg dl−1)55. All participants gave informed consent 
before participating in this experiment.

Experiment 2. Of the 30 participants who completed the study, three were excluded 
due to a limited range in their BDM ratings (failed criterion 2). An additional three 
participants were excluded for a limited range in their use of the confidence scale 
(failed criterion 4). In total, 24 participants were included in the main analyses 
(17 females, aged: 21–38). All participants were required to fast for 4 hours before 
doing the experiment. All participants gave informed consent before participating 
in this experiment.

Sample size was determined a priori. A power estimation was based on 
previously published work that used a similar experimental set-up26. We 
implemented a fixed sample stopping rule set a priori (N =​ 30). Statistical 
inferences were conducted only after allof the data were collected. A participant 
who did not fulfil one of the exclusion criteria (decided before data collection) 
would have been excluded from the analysis without replacement.

Eye trackers. For experiment 1, eye gaze was sampled at 250 Hz with a head-
mounted SR Research Eyelink II eye-tracker (SR-Research). For experiment 2, 
eye movements were recorded at 1,000 Hz with an EyeLink 1000 Plus eye-tracker 
(SR-Research).

Preparation of the eye-tracking data. Experiment 1. Areas of interest (AI) were 
defined by splitting the screen in half to create two equal-sized areas. Fixations 
in the left AI were assumed to be directed towards the left snack item and vice 
versa. We constructed two variables from the eye-tracking data: the DDT between 
the two AIs and GSF. DDT was calculated by subtracting the total dwell time on 
the left side from the total dwell time on the right side. GSF was calculated using 
the number of times that participants shifted their gaze from one AI to the other 
during each trial.

Experiment 2. AIs were pre-defined by the three squares that participants  
had to fixate on to view the items (given the gaze-contingent design). We derived 
two variables from the eye-tracking data: the total dwell time in each AI for a given 
trial and GSF. Following experiment 1, GSF measured the number of fixations 
in one AI immediately followed by a fixation in another AI. To ensure that 
participants paid attention, we excluded trials where participants had not fixated 
on every option available at least once. Of the 3,457 trials, 13 were excluded  
from the analysis for this reason.

Hierarchical models. All of the hierarchical analyses reported in the results 
section were conducted using the lme4 package56 (version 1.1-7) in R. For  
the linear models, degrees of freedom and P values were obtained using the 
Kenward–Roger approximation, as implemented in the pbkrtest package57.  
For the choice models (Fig. 1c,f), we ran two hierarchical logistic regressions: in 
experiment 1 we predicted the log odds ratio of picking the right-hand  
option on a given trial; for experiment 2 we predicted the log odds ratio of  
picking the reference item. The reference item was determined as the first  
item encountered according to reading order in Latin languages (that is, the  
upper-left item for the trials when an item was presented in that position  
and the upper right item for the remaining trials). Fixed-effect confidence 
intervals were estimated by multiplying the standard errors by 1.96 (ref. 58).  

Because these confidence intervals are estimates that do not take the covariance  
between parameters into account59, they should not be interpreted too strictly, 
but rather serve to give the reader a sense of the precision of the fixed-effect 
coefficients. Note that all predictors reported are z-scored on the participant 
level and that all models allow for random slopes at the participant level. For 
completeness, we report coefficients from the full model, while noting that this 
model is not always the most parsimonious. For a comprehensive list of models 
tested and a formal model comparison using BIC scores see the Supplementary 
Information Section 3.

Note that the regression models for confidence in experiment 1 had issues 
converging. We addressed these issues by square-root-transforming the |DV| 
predictor. Notably, for the individual difference analyses that investigated the 
change of mind and transitivity, we did not implement hierarchical models  
but instead unpooled (individual-level) models. The rationale behind this choice 
was that for both analyses we were interested in studying between-subject 
variation (Fig. 3c and Fig. 4c) that could be potentially affected by the shrinkage of 
parameters towards the group mean that is characteristic of hierarchical models60.

Code availability. The code for the analyses presented in this article can be found 
at the BDM Lab GitHub page: https://github.com/BDMLab.

Data availability. The data presented in this article can be found at the BDM 
Lab GitHub page: https://github.com/BDMLab, and on figshare: https://dx.doi.
org/10.6084/m9.figshare.3756144.v261.
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