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When planning behavioural experiments, researchers must 
decide which observables to collect (observation) and 
how to preprocess them (transformation) before per-

forming statistical analyses. In many fields of behavioural science 
and psychology, there are no hard criteria to make these decisions, 
although they can have a drastic impact on the conclusions from a 
given study1–3. Often they are based on common laboratory prac-
tice or expert consensus (for example, refs. 4,5), under the implicit 
assumption that tradition and expertise have evolved to approxi-
mate the best method. However, recent research has highlighted a 
wide variability in observation6 and transformation2,3,7,8 methods 
within different fields of psychology. In this paper, we develop a 
quantitative criterion for evaluating measurement methods in the 
context of experimental research. We ground our approach in clas-
sical validity theory and seek to surmount its shortcomings by inte-
grating metrological concepts from technology.

Experimental measurement in psychology
We constrain our focus to the experimental study of the human 
mind, which includes many fields of psychology. As the mind is 
not directly observable, its attributes are assessed from observable 
behaviour, such as verbal expressions, motor responses or physio-
logical processes. Thus, the psychological inverse problem is how to 
infer a latent psychological attribute from an observation9, a process 
often termed measurement.

Across sciences, there are at least two questions associated with 
measurement: whether it is meaningful and whether it is accurate. 
The first question is addressed by measurement theory, concerned 
with the formal representation of empirical observations as num-
bers and with the rules that can be applied to these numbers10. For 
example, a majority of psychologists represent observations such as 
response times with real numbers and treat them as if they were 
on an interval scale, i.e., additive11. Measurement theory prescribes 
fundamental axioms that any representation must obey to be truly 

additive10. These axioms can be empirically tested. For example, two 
equal weights combined must weigh as much as the sum of the indi-
vidual weights, an operation termed concatenation. Because one 
cannot concatenate psychological attributes in this way, representa-
tional measurement theory provides alternative tests of additivity10. 
Measurement theory operates on idealised empirical observations. 
For example, the measurement of the same weight with the same 
instrument is regarded as invariant10, which does not account for 
the measurement error present in even the most precise weight 
measurements12. For weight measurement, this error is relatively 
small, and can be ‘averaged out’ by repeated measurement. This 
situation is rather different in psychology, where measurement 
error can be on the same order of magnitude as differences between 
experimental conditions. This makes any test of measurement axi-
oms challenging—and indeed, they have only been investigated 
in the subdisciplines of psychophysics, item-response theory and 
behavioural economics10.

The second question is addressed by metrology, which is con-
cerned with the quantification of measurement error through 
calibration and the reduction of measurement error by suit-
able technology13. A related field in psychology is psychometrics. 
Metrology assumes a true attribute score (without any realist claims 
on its existence outside measurement) and an (often probabilis-
tic) measurement model that describes how this true score relates 
to the observation. Measurement can be cast as inference on the 
true score12. The quality of a measurement is judged by its accuracy. 
Given hypothetical repetitions of the measurement, accuracy can 
be decomposed into two components: low variability of the inferred 
attribute under constant true scores (precision, i.e., low random 
measurement error, also termed variance) and low average distance 
from the true scores (trueness, i.e., low systematic measurement 
error, also termed bias)14. We note that ‘trueness’ alone is some-
times referred to as ‘accuracy’ in the wider literature; here we use  
metrological conventions.
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Our proposal is grounded in this second, metrological, perspec-
tive and aims at reducing measurement error. In doing so, we hope 
to advance the first perspective as well, by facilitating empirical tests 
of measurement axioms.

Classical psychometric concepts: construct validity and 
reliability
According to a psychometric perspective, measurement methods 
should be valid and reliable15. These crucial concepts were devel-
oped to evaluate the measurement of stable attributes for which 
the true scores are unknown16. To evaluate the measured score, the 
unknown true score is surrogated with a known variable, termed 
the criterion: a concurrent measurement related to the attribute 
in question (concurrent validity), a process or observation that is 
influenced by the attribute (predictive validity) or the properties of 
the measurement instrument itself (content validity)17. However, 
because there is usually no singular criterion, researchers form a 
nomological net that defines how the studied attribute, in theory, 
relates to other attributes or observables. A measurement of the 
attribute is considered to have construct validity if it occupies the 
same place in the nomological net as the attribute itself16. Because 
there is no method to combine the observed correlations within the 
nomological net into a single number16, and because the predicted 
correlations are usually specified in loose terms rather than as pre-
cise coefficients16,18, the concept of construct validity cannot serve to 
quantify trueness and precision.

Classical reliability, on the other hand, assesses how 
inter-individual differences in the measurement are stable across 
repetitions over time or over test items. This addresses measure-
ment precision but not trueness16. Indeed, improving reliability 
may even reduce trueness. For example, if one replaces a standard 
intelligence test score with a measurement of index finger length, 
the inferred attribute will be very reliable, but is unlikely to have a 
strong relation with actual intelligence. Thus, interpreting reliability 
metrics requires a criterion to guarantee trueness16.

Retrodictive validity
Classical validity theory is built on the premise that the true score 
is unknown and that there is no observable variable (outside the 
measurement to be evaluated) that captures all relevant variance in 
the true score. Therefore, classical validity theory cannot provide a 
single criterion for validity assessment. However, in experimental 
research on volatile attributes, the true score can be influenced by 
experimental manipulation. This creates an opportunity to apply 
the metrological concept of calibration, which is based on measure-
ment in a standardized experiment. We propose that intended val-
ues of the true score in such a calibration experiment can provide a 
singular criterion to assess accuracy (Fig. 1a). We term this type of 
criterion validity ‘retrodictive validity’, since the aim is to retrodict 
the (experimentally induced) values of the psychological attribute. 
Note that we have previously used the term ‘predictive validity’19,20, 
which confusingly refers to a different concept in classical validity 
theory and as such we have dropped it in more recent publications21. 
We illustrate this approach with a worked example before discuss-
ing the general conditions under which this framework will yield 
improved accuracy. Table 1 provides an exemplary and nonexhaus-
tive list of further example applications across different subfields of 
psychology.

Worked example 1: quantifying implicit learning
We consider a group of clinical psychologists who have proposed 
a novel technique to reduce trauma memory. To evaluate their  
intervention in healthy individuals, they experimentally create 
aversive associations and seek to reduce them with their novel 
method. To this end, they conduct an experiment in which a person  
associates a geometric cue with an electric shock (CS+) and another 

cue with no shock (CS–), a procedure often termed fear condi-
tioning. They want to measure the ensuing associative memory  
after the subsequent intervention, compared to a control group 
with no intervention. They record each person’s skin conductance 
response to the geometric symbols, which is known to be influ-
enced by implicit memory for the electric shock. Then they need 
to find the best possible transformation for quantifying the attri-
bute ‘implicit associative threat memory’ from the observed skin 
conductance responses. A related question is whether a differ-
ent observation (such as cardiac responses) may provide an even  
better measurement.

In the absence of any memory intervention, a plethora of 
research has demonstrated in healthy individuals and using various 
measurement methods that CS+ is more strongly associated with 
electric shock than CS–. We can transform this ordinal prediction 
into real-valued intended values, which we denote with e: CS+ is 
assumed to instil a higher level of aversive memory (e = 1) than  
CS– (e = 0). One could also create more than two levels of e by lever-
aging classical associative learning theory. Here, one prediction is 
that the difference from CS– aversive memory for a third cue, C, has 
half the size of that for CS+ if an association was established with 
compound cue CX (e = 0.5).

Our proposal is to perform an independent pilot experiment, 
without the experimental intervention, and measure skin conduc-
tance. One can then select the data transformation (preprocessing) 
method that yields the highest correlation between intended asso-
ciative memory values e and measured associative memory values 
y, i.e., the highest retrodictive validity. We term this a calibration 
experiment. In our example, the calibration procedure can be iden-
tical to the control group in the planned substantive experiment, 
just without the planned intervention, which additionally allows 
power analyses (see below). The formal calibration process now 
proceeds in three steps: defining the measurand, identifying valid-
ity conditions and reporting their relationship.

Defining the measurand. The procedure that is used to create 
fear memory for calibration includes specifying the conditioned 
stimulus (CS; for example, triangles with specific size and colour), 
the unconditioned stimulus (US; for example, electric shock with 
defined strength), the reinforcement schedule, the CS–US interval, 
the inter-trial interval, the number of trials, the instructions, the 
preparation of the participant and so on.

Validity conditions. These are the measurement conditions under 
which the optimised measurement method is assumed to be optimal. 
For example, fear memory-induced skin conductance responses 
occur with some latency after CS presentation. This latency is influ-
enced by the duration and regularity of the CS–US interval, and so 
the CS–US interval is an important validity condition. In a future 
experiment with a deviating CS–US interval, the optimised mea-
surement method from the calibration experiment may not be opti-
mal anymore. In contrast, discriminability of CS+ and CS– colour 
is not among the validity conditions. Discriminability is suspected 
to influence the effectiveness of the experimental procedure, that 
is, the variability in true scores between participants. This impacts 
on retrodictive validity but is independent from any specific mea-
surement method and is not known to influence measurement  
error. The next section clarifies the relation between variability  
in true scores (which we term experimental aberration) and  
measurement error.

Reporting the relationship. In the simple case of discriminative 
fear conditioning, researchers will report Cohen’s d or Hedge’s g 
for the CS+ vs CS– difference across participants. They will com-
pare several methods in one sample and report the ranking of  
the methods.
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The planned memory-editing experiment consists of a con-
trol group that receives the same treatment as in the calibration 
experiment and an intervention group in which this treatment is 
followed by the memory-editing intervention. In this situation, we 
can assume that both the experimental aberration and the measure-

ment error in the control group are the same as in the calibration 
experiment. This situation allows performing a power analysis for 
the planned experiment (Fig. 2; see ref. 22 for an example). Imagine 
that in the calibration experiment, the method with highest retro-
dictive validity achieved an effect size of (Cohen’s) d = 1.2 for the 
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Fig. 1 | Retrodiction and calibration. a, A standardised experiment with intended attribute scores e generates true scores t. The measured attribute, 
y, is generated by transforming some observed data. Retrodictive validity denotes the observable correlation between e and y and is influenced by the 
measurement error as well as by the correlation between experimental aberration and measurement error, Cor(ω, ε). b, The calibration process. Expert 
consensus defines calibration experiments. Different observables and transformations can be optimised and evaluated. The calibration report is fed back 
to the community and inspires refined calibration experiments, observables and measurement models.

Table 1 | Example latent attributes from different sub-fields of psychology for which calibration experiments appear feasible

Sub-field Latent attribute Possible calibration 
experiments

Specification of intended 
values per theory

application outside calibration

Perception Perceived stimulus property 
(for example, length)

Manipulation of true stimulus 
property

Interval scale with 
arbitrarily many levels 
(true stimulus property)

Investigating Bayesian integration 
of prior expectation

Learning Stimulus–stimulus or 
stimulus–response 
association

Pavlovian conditioning, operant 
conditioning

Interval scale with three or 
more levels (associative 
learning theory)

Evaluation of learning interventions

Memory Declarative memory Number of repetitions in word 
lists

Interval scale with three 
or more levels (retrieved 
context theory)

Measuring clinical memory 
impairments

Cognition Spatial attention Spatial cueing task Ordered levels Investigating influence of 
spatial attention on evidence 
accumulation in value-based 
decision-making

Decision-making Utility Food-deprived vs satiated state Ordered levels Comparing theories of economic 
choice

Metacognition Decision confidence High vs low noise in perceptual 
decision

Ordered levels Comparing metacognition across 
domains

Emotion Subjective feeling of ‘disgust’ Disgust-eliciting video 
exposure vs neutral video

Ordered levels Investigating the role of disgust in 
trauma-related disorders

Social psychology Physical attraction Exposure to photos of attractive 
physiques of preferred vs 
non-preferred sex

Ordered levels Investigating the dynamics of 
emerging social media platforms
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within-participant CS+ vs CS– difference. If the intervention itself 
has no variation across participants (which is a best-case assump-
tion), then it will simply shift this distribution towards zero in the 
intervention group. The researchers want to be able to detect a 
reduction in fear memory of 50% or more, with 80% power in a 
one-tailed t-test at P < 0.05. The difference between a control group 
that is similar to the calibration experiment and an intervention 
group with 50% less fear memory corresponds to an effect size of 
Cohen’s d = 0.6, resulting in N = 72 participants. Any variation in 
the effectiveness of the intervention would increase the experimen-
tal aberration in the experimental group and further increase the 
required sample size.

Retrodictive validity and measurement accuracy
For a formal treatment, we now define key terms (see Fig. 1a for 
illustration and Supplementary Information for mathematical 
detail). As in classical test theory and other true score theories23,24, 
we assume real-valued ‘true scores’ of a psychological attribute, 
which we denote t. We assume a priori that they are measurable (in 
a measurement-theoretic sense10) and on interval scale. With our 
(within- or between-participants) experimental manipulation, we 
seek to achieve intended differences in t; we denote these experi-
mentally intended values with e. We note that psychological theo-
ries differ in how quantitative their predictions are. Some theories, 
such as associative learning theory or perceptual decision theory, 
prescribe the intended values on several levels of an interval scale. 
Other theories may make only ordinal predictions for two levels of 
the attribute. In such cases, we specify e by assuming a fixed aver-
age difference in intended true score, which brings e on an interval 
scale. This additional assumption will usually not affect accuracy 
assessment, as we will see later.

We are interested in an error-free measurement of the true score 
from some observable quantity. We make no assumption on the 
measurement model that is used to transform the observable. We 
denote the resulting estimate of the true score with y and assume 
it is on an interval scale. Thus, when we evaluate the measure-
ment method that generates y, we evaluate the observation method 
together with a measurement model or transformation method.

In the ideal case of an error-free measurement, since psychologi-
cal attributes have no natural scale, there is an arbitrary linear map-
ping between e, t and y. Any nonlinearity in the mapping between 
these variables constitutes a misspecification of the intended values 
in the underlying theory or a misspecification of the measurement 
model, and so we regard it as an error term.

Our goal is to evaluate trueness and precision of y. If we have 
several measurements (for example, participants) per level of e, the 
total measurement error is jointly influenced by trueness and preci-
sion. Our goal is to minimize the total measurement error.

First, we consider the mapping from e to t. In an ideal experi-
ment, this would be a non-stochastic linear mapping. Any devia-
tion from this situation constitutes experimental aberration ω. 
Aberration can be decomposed into two terms. The first is non-
linearity, a systematic (i.e., across participants) misspecification of 
e, which reduces the trueness of the experimental model. This is 
illustrated in Fig. 3a, where the black line denotes the actual non-
linear dependency between e and t, which is contrasted to a linear 
relationship illustrated by the grey line. If there are just two levels of 
e, then this systematic aberration vanishes at the considered levels of 
e and therefore becomes irrelevant, but this is not the case for more 
than two levels of e (Fig. 3d). The second component is stochastic 
variation in the effectiveness of the manipulation, such that for the 
same value of e, t takes different values in different subjects or rep-
etitions of the experiment. This means the model of our experimen-
tal manipulation is imprecise. This is illustrated by the distribution 
of red dots in Fig. 3a, which depict the true score differences under 
a constant value of e.

Next, we consider the mapping from t to y (Fig. 3b). Again, we 
assume a potential systematic misspecification in the measurement 
model, that is, a lack of trueness, and stochastic error, that is, an 
imprecision. Together, they constitute the measurement error ε.

In the Supplementary Information, we mathematically derive 
the conditions under which maximising the (observable) correla-
tion between intended and estimated scores, Cor(e,y), minimizes 
measurement error. The main result is that these conditions are 
defined by the correlation between experimental aberration and 
measurement error, Cor(ω,ε).

Because the experimental manipulation is usually distinct from 
the measurement method, it is generally reasonable to assume 
Cor(ω,ε) = 0. In this case, increasing Cor(e,y) is guaranteed to 
increase measurement accuracy. Additionally, for any fixed mea-
surement method, Cor(e,y) prescribes a lower bound on mea-
surement accuracy. This is a standard case and will apply in most 
circumstances. In other cases, discussed in the Supplementary 
Information, increasing Cor(e,y) may still increase measurement 
accuracy, but this is not guaranteed. However, we argue that these 
are identifiable edge cases.

The only assumption the model makes is that the correlations 
between e, t and y are strictly positive, but they can be small. Thus, 
one can use weak theories or calibration experiments to improve 
measurement. In particular, the transformation of an ordinal theory 
into an interval-scaled variable e does not diminish the viability of 
the approach.

Calibration
Calibration is the evaluation of a measurement method under con-
trolled circumstances, and it can be broken up into several parts13.

Defining the measurand. What is being measured in the calibra-
tion process13 is known as the measurand, the true values of the 
measured attribute in our case. We need to define how these values 
are created. We suggest using an experimental manipulation that 
has a relatively specific impact on the psychological attribute in 
question and precisely defining the procedure by which e is manip-
ulated. Details will depend on the substantive research field and will 
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SCR(CS+) – SCR(CS–)
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Fig. 2 | Power analysis. Measured scores y in a calibration experiment 
are affected by measurement error and experimental aberration. In this 
example, y is the difference between two skin conductance response 
(SCR) measurements and follows a standard normal distribution. The 
proposed experimental treatment is composed of the same manipulation 
as in the calibration experiment and either an additional intervention (red 
lines) or no intervention (control, grey lines). In the best-case scenario 
of no intervention variability, the distribution of measured scores in the 
intervention group will be the same as in the control group, with shifted 
mean. In this example, d = 1.2 in the calibration experiment, and a 50% 
fear memory reduction in the intervention corresponds to a between-group 
effect size of d = 0.6, resulting in N = 72 participants to measure this fear 
memory reduction with 80% power at P < 0.05 in a one-tailed t-test. 
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generally include a definition of the population from which the test 
sample is drawn.

Validity conditions. The calibration results are only valid under 
the specified validity conditions13. These are conditions known to 
impact the measurement method. Conditions known to impact 

the experimental aberration are less important here, as they do not 
speak to future use of the measurement method in other experi-
mental contexts.

Reporting the relationship. In metrology, the relationship between 
measured and reference values are usually reported separately as a 
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Fig. 3 | the retrodiction approach. a, The ideal relation between intended and true scores is a linear mapping with arbitrary coefficients (grey line), but 
the true relation is possibly nonlinear (systematic aberration, black line) and imprecise (distribution of red dots). Because there are only two values of 
experimental manipulation in this example, the systematic aberration does not influence the correlation between e and t. b, Similarly, the relation of true 
scores and measured scores includes systematic error and imprecision. c, Resulting mapping from intended to measured scores is assessed by their 
correlation, that is, a linear mapping (grey line), but the true relation may be nonlinear (black line, composition of the two nonlinear functions in a and b), 
and imprecise (distribution of data points). d–f, Same model as in a and b but with three (not equidistant) intended scores. Here, the systematic aberration 
impacts the resulting error in f. g–i, Correlation between e and y under three different levels of measurement error ε. In i, ε = 0, but experimental aberration 
renders the resulting error non-zero.
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trueness and precision13. Because of the presumably large aberration 
in psychology, these two terms cannot be separated and are jointly 
minimized. Because aberration influences observed retrodictive 
validity, we would expect that retrodictive validity rankings of dif-
ferent methods will be more generalizable than the actual effect 
sizes. Therefore, we suggest comparing several measurement meth-
ods in the same calibration experiment.

Iteration. Sample size of calibration studies should be reasonably 
large, to avoid overfitting a method to particular datasets. Often, the 
goal is to compare different measurement models (or transforma-
tion methods), which can be applied retrospectively to previously 
acquired datasets. To facilitate this in an iterative process (Fig. 1b), 
we suggest compiling and sharing data from calibration experi-
ments across laboratories in standardized format (for an example, 
see ref. 25). Current developments in data management automation 
could possibly enable fully automated benchmark testing as soon as 
a new calibration dataset is published.

Further applications
Besides the main goal of improving measurement accuracy, ret-
rodictive validity allows further applications. First, by specifying 
measurement uncertainty26, it allows power analyses. Often, the 
true size of a hypothesized effect is not known a priori, and pub-
lished effect sizes tend to overestimate the true effect size27. In many 
cases, retrodictive validity can determine the maximum achievable 
effect size (Fig. 2 and see section “Worked example 1”). This will 
often render it possible to compute minimum sample sizes, required 
under the best-case assumptions that an experimental manipulation 
has no variation. This also provides a direct route to compare finan-
cial costs associated with different measurement methods.

Next, when the measurement method is kept constant, retrodic-
tive validity is only influenced by experimental aberration, which can 
depend on laboratory standards and staff training. For example, test-
ing in noisy rooms with many participants may result in lower retro-
dictive validity than testing the same measurement method in a quiet 
room. Retrodictive validity could enable quality control, by compar-
ing different laboratories or trainees in standardised experiments. We 
note that current scientific practices implicitly incentivize large effect 
sizes in hypothesis tests28. Replacing these incentives with success in 
calibration experiments could potentially improve research culture.

Finally, one can use the retrodiction model to optimise experi-
mental manipulations. Maximising retrodictive validity will then 
yield the experimental manipulation with lowest combined aber-
ration and measurement error. This can aid experimental design. 
As an example, we have used this approach to empirically find the 
optimal number of trials to measure fear memory recall. Here, more 
trials mean less measurement error, but at the same time reduction 
of the true effect due to extinction (i.e., increased aberration). The 
optimal balance is difficult to intuit but can be found empirically29.

Worked example 2: measuring decision confidence
To see how the framework can be applied in diverse research set-
tings, we here give another concrete example. A research team seeks 
to characterise the influence of social conformity on decision confi-
dence. They plan to use a perceptual decision-making task and pro-
vide social information before measuring participants’ confidence. 
They further plan to record explicit confidence ratings, reaction 
time of the ratings and key stroke force. Their goal is to identify the 
most precise method for integrating these observables into a confi-
dence measure.

It is well known from decision-making research that the qual-
ity of perceptual evidence influences one’s decision confidence. As 
a calibration experiment, the researchers can thus use a random 
dot-motion task with high and low coherence and predict that deci-
sion confidence is higher in the high coherence condition (e = 1) 

than in the low coherence condition (e = 0). Using data from this 
experiment, they can now compute y under various different mea-
surement models, for example, a model only taking into account 
the explicit ratings or multiple regression models that also incor-
porate reaction times and/or key force30. Finally, they can select the 
method with highest retrodictive validity.

The researchers can then set up their substantive experiment, 
perhaps using only a single staircased level of random dot motion 
coherence, and test their hypothesis about the effect of social con-
formity on confidence in such a setting. For instance, different 
conditions of the experiment may provide the participant with 
helpful or unhelpful advice about the correct decision on each trial. 
Importantly, despite the experiment no longer containing varia-
tion in coherence, the researchers can be sure that, due to selecting 
a confidence measure based on its high retrodictive validity, they 
have chosen the most accurate metric of perceptual decision confi-
dence against which to evaluate their hypothesis.

Discussion
Retrodictive validity corresponds to accuracy of inference on a true 
score. It provides a framework for rational selection between, and 
optimisation of, measurement methods, and it can be established 
and exploited in a calibration process. We note that this approach 
also applies to non-behavioural measures, such as inferring a psy-
chological attribute (for example, pain) from neuroimaging data31.

As anticipated by classical validity theory16, the method does 
not allow separating trueness and precision, but jointly improves 
both. Assessment of reliability can help in disentangling these two, 
as it depends on precision alone (see Supplementary Discussion for 
details). Our method is guaranteed to improve accuracy as long as 
the experimental aberration is uncorrelated with the measurement 
error. It is difficult to come up with plausible cases where this con-
dition is violated, but if substantive research reveals circumstantial 
evidence for any such violations then the proposed method should 
be used with caution.

Tradition remains the mainstay of justification for data collec-
tion and preprocessing methods in many subfields of psychology, 
but this comes with a range of theoretical, statistical and practical 
problems, including low reproducibility. Widespread researcher 
degrees of freedom have been criticized7, and there are increasing 
calls to plan and pre-register data preprocessing before a study is 
conducted32,33. This leaves research practitioners in the uncom-
fortable situation of having to choose between methods without 
good reason. Collecting huge samples increases reproducibility 
but imposes a heavy cost if the method itself is not optimised. Here 
we propose a generic solution that can be applied across differ-
ent branches of psychology and may alleviate several challenges  
experimental psychology is currently confronted with.
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